Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Effect of vegetation heterogeneity on radiative transfer in forest fires

François Pimont A D , Jean-Luc Dupuy A , Yves Caraglio B and Dominique Morvan C
+ Author Affiliations
- Author Affiliations

A INRA (Institut National pour la Recherche Agronomique), UR 629 Ecologie des Forêts Méditerranéennes, Equipe de Physique et Ecologie du Feu, Domaine Saint Paul, Site Agroparc, F-84914 Avignon Cedex 9, France.

B CIRAD (Centre de coopération Internationale en Recherche Agronomique pour le Développement), Unité de Modélisation des Plantes TA40/PS2, F-34398 Montpellier, France.

C UNIMECA, 60 rue Joliot Curie, Technopôle de Château Gombert, F-13453 Marseille Cedex 13, France.

D Corresponding author. Email: pimont@avignon.inra.fr

International Journal of Wildland Fire 18(5) 536-553 https://doi.org/10.1071/WF07115
Submitted: 21 August 2007  Accepted: 22 October 2008   Published: 10 August 2009

Abstract

Wildland fires are driven by the heat transferred from the fire source to the unburned fuel bed and this transfer is likely to be affected by the spatial heterogeneity of fuel element distributions at different scales from shoot to stand. In a context of theoretical fire modelling, we investigated the impact of a departure from randomness of fuel distributions on the radiative transfer of energy. Our methodology was derived from the approach developed for solar radiation in heterogeneous canopies or clouds and was modified to suit an analysis of fire behaviour. Some fine and coarse fuel distributions for several Mediterranean fuel types were derived from field measurements and plant architecture modelling. A comparison of the average irradiances in different fuels showed whether heterogeneity effects were significant or not. Results showed that both marked spatial variability in fuel distribution (low cover fraction and large clumps) and a high vegetation density were required to provide significant effects. The radiative transfer in heterogeneous maritime pines and in dense shrub stands was significantly affected by heterogeneity, mainly at crown and shoot scales. Less pronounced effects were observed in Aleppo pine stand and light shrubs. In terms of fuel modelling, the 2-m resolution used in a fire model such as FIRETEC seems to be sufficient for the fuel types investigated here, with the exception of dense small clumps in shrublands. An effective coefficient was proposed for these latter cases.

Additional keywords: fuel modelling, physically-based model, plant architecture, shoot clumping, STAR.


Acknowledgements

The authors wish to thank the two anonymous reviewers who greatly contributed to improving the present paper. This study has been partially funded by the European Commission in connection with the FIRE PARADOX research program (6th Framework R&D Program of the European Union, 2006–2010).


References


Albini FA (1985) A model for fire spread in wildland fuels by radiation. Combustion Science and Technology  42, 229–258.
Crossref | GoogleScholarGoogle Scholar | Barczi JF, de Reffye P, Caraglio Y (1997) Essai sur l’identification et la mise en œuvre des paramètres nécessaires à la simulation d’une architecture végétale. Le logiciel AMAPsim. Modélisation et simulation d’une architecture des végétaux. In ‘Science Update’. (Eds J Bouchon, P de Reffye, D Barthelemy) pp. 205–254. (INRA Editions: Paris)

Campbell GS, Norman JM (1997) ‘Introduction to Environmental Biophysics.’ 2nd edn. (Springer: the Netherlands)

Caraglio Y, Lagarde I , Blaise F (1996) Modélisation des peuplements combustibles: une nouvelle approche dans la prévention des incendies. Forêt Méditerranéenne  XVII(4), 324–328.
Caraglio Y, Pimont F, Rigolot E (2007) Pinus halepensis architectural analysis for fuel modelling. In ‘Proceedings, International Workshop MEDPINE. 3 – Conservation, Regeneration and Restoration of Mediterranean Pines and their Ecosystems’, 26–30 September 2005, Bari, Italy. (Eds V Leone, R Loveglio) pp. 43–59. (Centre International des Hautes Etudes Agronomiques Méditerranéennes Editions: Montpellier)

Cescatti A (1997) Modelling the radiative transfer in discontinuous canopies of asymmetric crowns. I. Model structure and algorithms. Ecological Modelling  101, 263–274.
Crossref | GoogleScholarGoogle Scholar | Cohen M, Rigolot E, Valette JC (2004) From the vegetation to the inputs of a fire model: fuel modelling for wildland–urban interface management. In ‘Warm International Workshop on “Forest Fires in the Wildland–Urban Interface and Rural Areas in Europe: an integral planning and management challenge” ’, 15–16 May 2003, Athens, Greece. (Ed. G Xanthopoulos) pp. 113–120. (Institute of Mediterranean Forest Ecosystems and Forest Products Technology: Athens)

Cruz MG, Butler BW, Alexander ME, Forthofer JM , Wakimoto RH (2006) Predicting the ignition of crown fuels above a spreading surface fire. Part I: Model idealization. International Journal of Wildland Fire  15, 47–60.
Crossref | GoogleScholarGoogle Scholar | Daligault O, Moro C (1991) Caractéristiques physiques des aiguilles de pin. INRA Internal Report PIF1991-12. Available at http://www.eufirelab.org/toolbox2/library/upload/18.doc [Verified 23 June 2009]

Dauzat J (1993) Simulated plants and radiative transfer simulations. In ‘Crop Structure and Light Microclimate: Characterization and Applications’. (Eds C Varlet-Grancher, R Bonhomme, H Sinoquet) pp. 271–278. (INRA Editions: Paris)

Davis AB , Marshak A (2004) Photon propagation in heterogeneous media with spatial correlations: enhanced mean-free-paths and wider-than-exponential free-path distributions. Journal of Quantitative Spectroscopy & Radiative Transfer  84, 3–34.
Crossref | GoogleScholarGoogle Scholar | CAS | de Reffye P, Dinouard P, Barthélémy P (1991) Modélisation et simulation de l’architecture de l’orme du Japon Zelkova serrata (Thunb.) Makino (Ulmaceae): la notion d’axe de référence. In ‘Compte-Rendu du 2ème Colloque International sur l’Arbre’. Naturalia Monspeliensia (n° hors-série), pp. 251–266. (Université de Montpellier: Montpellier, France)

Dupuy JL , Morvan D (2005) Numerical study of a crown fire spreading toward a fuel break using a multiphase physical model. International Journal of Wildland Fire  14(2), 141–151.
Crossref | GoogleScholarGoogle Scholar | Grishin AM (1997) ‘A Mathematical Modelling of Forest Fires and New Methods of Fighting them.’ (Ed. F Albini) (Publishing House of the Tomsk University: Tomsk, Russia)

Guyon D, Berbigier P, Courrier G, Lagouarde JP , Moreau P (2003) LAI estimation in managed maritime pine ecosystem from directions gap fraction measurements. Canadian Journal of Remote Sensing  29(3), 336–348.
Knyazikhin Y, Marshak A, Myneni RB (2005) Three-dimensional radiative transfer in vegetation canopies. In ‘3D Radiative Transfer in the Cloudy Atmospheres’. (Eds A Davis, A Marshak) pp. 617–651. (Springer-Verlag: New York)

Lang AR (1991) Application of some of the Cauchy’s theorems to estimation of surface area of leaves, needles, and branches of plants, and light transmittance. Agricultural and Forest Meteorology  35, 83–101.

Crossref | Linn RR (1997) A transport model for prediction of wildfire behavior. Los Alamos National Laboratory, Science Report LA13334-T. (Los Alamos, NM)

Linn RR, Reisner J, Colman JJ , Winterkamp J (2002) Studying wildfire behavior using FIRETEC. International Journal of Wildland Fire  11, 233–246.
Crossref | GoogleScholarGoogle Scholar | Nilson T, Ross J (1997) Modelling radiative transfer through forest canopies: implications for canopy photosynthesis and remote sensing. In ‘The Use of Remote Sensing in the Modelling of Forest Productivity’. (Eds HL Gholz, K Nakane, H Shimoda) pp. 23–60. (Kluwer Academic Publishers: Dordrecht, the Netherlands)

Oker-Blom P , Kellomäki S (1983) Effect of grouping foliage on the within-stand and within-crown light regime: comparison of random and grouping canopy models. Agricultural Meteorology  28, 143–155.
Crossref | GoogleScholarGoogle Scholar | Parsons RA (2006) Fuel 3D: a spatially explicit fractal fuel distribution model. In ‘Fuels Management – How to Measure Success: Conference Proceedings’, 28–30 March 2006, Portland, OR. (Eds PL Andrews, BW Butler) USDA Forest Service, Rocky Mountain Research Station, Proceedings RMRS-P-41. (Fort Collins, CO)

Phattaralerphong J , Sinoquet H (2005) A method for 3D reconstruction of tree crown volume from photographs: assessment with 3D-digitized plants. Tree Physiology  25(10), 1229–1242.

CAS | PubMed | Ross J (1981) ‘The Radiation Regime and Architecture of Plant Stands.’ (Dr. W. Junk Publishers: The Hague, the Netherlands)

Siegel R, Howell JR (1992) ‘Thermal Radiation Heat Transfer.’ (Taylor and Francis: Washington, DC)

Sinoquet H, Thalisawanyangkura S, Mabrouk H , Kasemsap P (1998) Characterization of the light environment in canopies using 3D digitizing and image processing. Annals of Botany  82, 203–212.
Crossref | GoogleScholarGoogle Scholar | Vigy O, Rigolot E, Valette J-C (2005) Fire Star wildland fuel structure: model results. In ‘FIRE STAR: A Decision Support System for Fuel Management and Fire Hazard Reduction in Mediterranean Wildland–Urban Interfaces’. FIRE STAR EVG1-CT-2001-00041. Deliverable D6-04. Available at http://www.eufirestar.org [Verified 23 June 2009]

Wang YP , Jarvis PG (1993) Influence of shoot structure on the photosynthesis of sitka spruce (Picea sitchensis). Functional Ecology  7, 433–451.
Crossref | GoogleScholarGoogle Scholar |

Weber R (1991) Modelling fire spread through fuel beds. Progress in Energy and Combustion Science Journal  17, 67–82.
Crossref | GoogleScholarGoogle Scholar |

Weiss M, Baret F, Smith GJ, Jonckheere I , Coppin P (2004) Review of methods for in situ leaf area index (LAI) determination. Part II. Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology  121, 37–53.
Crossref | GoogleScholarGoogle Scholar |