Using hydrological modelling to improve the Fire Weather Index system over tropical peatlands of peninsular Malaysia, Sumatra and Borneo
J. Mortelmans


A
B
C
D
E
F
G
Abstract
Tropical peatland fires contribute to global carbon emissions and air pollution.
Enhance the globally used Canadian Fire Weather Index (FWI) system specifically over drained and undrained tropical peatlands in southeast Asia.
We included simulated tropical peatland hydrology in the FWI, creating a new peatland-specific version of the FWI (FWIpeat). FWIpeat, the original FWI (FWIref) and the drought code (DC) were evaluated against satellite-based active fire occurrence from 2002 to 2018.
The DC shows superior performance in explaining fire occurrence over undrained tropical peatlands. Over drained peatlands, DC and FWIpeat show similar results, both outperforming FWIref. A comparison with an earlier study over boreal peatlands indicates much smaller improvements from FWIpeat for tropical peatlands, possibly due to a lower accuracy of the hydrological input data.
Our results highlight the importance of including information on deeper soil layers, i.e. the DC or groundwater table, when assessing fire danger.
Although this study offers a promising approach for operational fire management over tropical peatlands, we emphasise the need for further research to refine the hydrological input data and explore additional constraints from Earth observation data.
Keywords: Fire Weather Index, FWI, Groundwater table, hydrological data, PEATCLSM, peatland fires, southeast Asia.
References
Abatzoglou JT, Williams AP, Boschetti L, Zubkova M, Kolden CA (2018) Global patterns of interannual climate–fire relationships. Global Change Biology 24(11), 5164-5175.
| Crossref | Google Scholar | PubMed |
Ambadan JT, Oja M, Gedalof Z, Berg AA (2020) Satellite-observed soil moisture as an indicator of wildfire risk. Remote Sensing 12(10), 1543.
| Crossref | Google Scholar |
Andela N, Morton DC, Giglio L, Paugam R, Chen Y, Hantson S, Van Der Werf GR, Anderson JT (2019) The Global Fire Atlas of individual fire size, duration, speed and direction. Earth System Science Data 11(2), 529-552.
| Crossref | Google Scholar |
Apers S, De Lannoy GJM, Baird AJ, Cobb AR, Dargie GC, del Aguila Pasquel J, Gruber A, Hastie A, Hidayat H, Hirano T, Hoyt AM, Jovani-Sancho AJ, Katimon A, Kurnain A, Koster RD, Lampela M, Mahanama SPP, Melling L, Page SE, et al. (2022) Tropical peatland hydrology simulated with a global land surface model. Journal of Advances in Modeling Earth Systems 14(3), e2021MS002784.
| Crossref | Google Scholar | PubMed |
Bechtold M, De Lannoy GJM, Koster RD, Reichle RH, Mahanama SP, Bleuten W, Bourgault MA, Brümmer C, Burdun I, Desai AR, Devito K, Grünwald T, Grygoruk M, Humphreys ER, Klatt J, Kurbatova J, Lohila A, Munir TM, Nilsson MB, et al. (2019) PEAT-CLSM: a specific treatment of peatland hydrology in the NASA Catchment Land Surface Model. Journal of Advances in Modeling Earth Systems 11(7), 2130-2162.
| Crossref | Google Scholar | PubMed |
Bechtold M, De Lannoy GJM, Reichle RH, Roose D, Balliston N, Burdun I, Devito K, Kurbatova J, Strack M, Zarov EA (2020) Improved groundwater table and L-band brightness temperature estimates for northern hemisphere peatlands using new model physics and SMOS observations in a global data assimilation framework. Remote Sensing of Environment 246, 111805.
| Crossref | Google Scholar |
BMKG (2024) Sistem Peringatan Kebakaran Hutan Dan Lahan. Available at https://www.bmkg.go.id/cuaca/kebakaran-hutan.bmkg?index=fwi&wil=indonesia&day=obs [in Indonesian]
Burdun I, Bechtold M, Sagris V, Komisarenko V, De Lannoy G, Mander Ü (2020a) A comparison of three trapezoid models using optical and thermal satellite imagery for water table depth monitoring in Estonian bogs. Remote Sensing 12(12), 1980.
| Crossref | Google Scholar |
Burdun I, Bechtold M, Sagris V, Lohila A, Humphreys E, Desai AR, Nilsson MB, De Lannoy G, Mander Ü (2020b) Satellite determination of peatland water table temporal dynamics by localizing representative pixels of a SWIR-based moisture index. Remote Sensing 12(18), 2936.
| Crossref | Google Scholar |
Burdun I, Bechtold M, Aurela M, De Lannoy G, Desai AR, Humphreys E, Kareksela S, Komisarenko V, Liimatainen M, Marttila H, Minkkinen K, Nilsson MB, Ojanen P, Salko SS, Tuittila ES, Uuemaa E, Rautiainen M (2023) Hidden becomes clear: optical remote sensing of vegetation reveals water table dynamics in northern peatlands. Remote Sensing of Environment 296, 113736.
| Crossref | Google Scholar |
Chaparro D, Piles M, Vall-llossera M (2016) Remotely sensed soil moisture as a key variable in wildfires prevention services: towards new prediction tools using SMOS and SMAP data. In ‘Satellite soil moisture retrieval: techniques and applications’. (Eds Prashant K. Srivastava, George P. Petropoulos, Yann H. Kerr) pp. 249–269. (Elsevier Inc.) 10.1016/B978-0-12-803388-3.00013-9
Chen Y, Hall J, Van Wees D, Andela N, Hantson S, Giglio L, Van Der Werf GR, Morton DC, Randerson JT (2023) Multi-decadal trends and variability in burned area from the fifth version of the Global Fire Emissions Database (GFED5). Earth System Science Data 15(11), 5227-5259.
| Crossref | Google Scholar |
Clark MP, Fan Y, Lawrence DM, Adam JC, Bolster D, Gochis DJ, Hooper RP, Kumar M, Leung LR, Mackay DS, Maxwell RM, Shen C, Swenson SC, Zeng X (2015) Improving the representation of hydrologic processes in Earth System Models. Water Resources Research 51(8), 5929-5956.
| Crossref | Google Scholar |
Couwenberg J, Dommain R, Joosten H (2010) Greenhouse gas fluxes from tropical peatlands in south‐east Asia. Global Change Biology 16(6), 1715-1732.
| Crossref | Google Scholar |
Crippa P, Castruccio S, Archer-Nicholls S, Lebron GB, Kuwata M, Thota A, Sumin S, Butt E, Wiedinmyer C, Spracklen DV (2016) Population exposure to hazardous air quality due to the 2015 fires in equatorial Asia. Scientific Reports 6, 37074.
| Crossref | Google Scholar | PubMed |
Dadap NC, Cobb AR, Hoyt AM, Harvey CF, Konings AG (2019) Satellite soil moisture observations predict burned area in southeast Asian peatlands. Environmental Research Letters 14(9), 094014.
| Crossref | Google Scholar |
Dadap NC, Hoyt AM, Cobb AR, Oner D, Kozinski M, Fua PV, Rao K, Harvey CF, Konings AG (2021) Drainage canals in southeast Asian peatlands increase carbon emissions. AGU Advances 2(1), e2020AV000321.
| Crossref | Google Scholar |
Dadap NC, Cobb AR, Hoyt AM, Harvey CF, Feldman AF, Im ES, Konings AG (2022) Climate change-induced peatland drying in southeast Asia. Environmental Research Letters 17(7), 074026.
| Crossref | Google Scholar |
Davies GM, Gray A, Rein G, Legg CJ (2013) Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland. Forest Ecology and Management 308, 169-177.
| Crossref | Google Scholar |
de Groot WJ, Wotton BM, Flannigan MD (2015) Wildland fire danger rating and early warning systems. In ‘Wildfire hazards, risks, and disasters’. (Eds JF Shroder, D Paton) pp. 207–228. (Elsevier Inc). 10.1016/B978-0-12-410434-1.00011-7
de Groot WJD, Field RD, Brady MA, Roswintiarti O, Mohamad M (2007) Development of the Indonesian and Malaysian fire danger rating systems. Mitigation and Adaptation Strategies for Global Change 12(1), 165-180.
| Crossref | Google Scholar |
De Lannoy GJM, Reichle RH (2016) Global assimilation of multiangle and multipolarization SMOS brightness temperature observations into the GEOS-5 catchment land surface model for soil moisture estimation. Journal of Hydrometeorology 17(2), 669-691.
| Crossref | Google Scholar |
Di Giuseppe F, Vitolo C, Krzeminski B, Barnard C, MacIel P, San-Miguel J (2020) Fire Weather Index: the skill provided by the European Centre for Medium-Range Weather Forecasts ensemble prediction system. Natural Hazards and Earth System Sciences 20(8), 2365-2378.
| Crossref | Google Scholar |
Di Giuseppe F, Benedetti A, Coughlan R, Vitolo C, Vuckovic M (2021) A global bottom-up approach to estimate fuel consumed by fires using above ground biomass observations. Geophysical Research Letters 48(21), e2021GL095452.
| Crossref | Google Scholar |
Dommain R, Couwenberg J, Glaser PH, Joosten H, Suryadiputra INN (2014) Carbon storage and release in Indonesian peatlands since the last deglaciation. Quaternary Science Reviews 97, 1-32.
| Crossref | Google Scholar |
Dymond CC, Field RD, Roswintiarti O, Guswanto (2005) Using satellite fire detection to calibrate components of the fire weather index system in Malaysia and Indonesia. Environmental Management 35(4), 426-440.
| Crossref | Google Scholar | PubMed |
Entekhabi D, Njoku EG, O’Neill PE, Kellogg KH, Crow WT, Edelstein WN, Entin JK, Goodman SD, Jackson TJ, Johnson J, Kimball J, Piepmeier JR, Koster RD, Martin N, McDonald KC, Moghaddam M, Moran S, Reichle R, Shi JC, et al. (2010) The soil moisture active passive (SMAP) mission. Proceedings of the IEEE 98(5), 704-716.
| Crossref | Google Scholar |
Evans CD, Williamson JM, Kacaribu F, Irawan D, Suardiwerianto Y, Hidayat MF, Laurén A, Page SE (2019) Rates and spatial variability of peat subsidence in acacia plantation and forest landscapes in Sumatra, Indonesia. Geoderma 338, 410-421.
| Crossref | Google Scholar |
Fernandes K, Verchot L, Baethgen W, Gutierrez-Velez V, Pinedo-Vasquez M, Martius C (2017) Heightened fire probability in Indonesia in non-drought conditions: the effect of increasing temperatures. Environmental Research Letters 12(5), 054002.
| Crossref | Google Scholar |
Field RD, Spessa AC, Aziz NA, Camia A, Cantin A, Carr R, de Groot WJ, Dowdy AJ, Flannigan MD, Manomaiphiboon K, Pappenberger F, Tanpipat V, Wang X (2015) Development of a Global Fire Weather Database. Natural Hazards and Earth System Sciences 15(6), 1407-1423.
| Crossref | Google Scholar |
Field RD (2020a) Evaluation of Global Fire Weather Database reanalysis and short-term forecast products. Natural Hazards and Earth System Sciences 20(4), 1123-1147.
| Crossref | Google Scholar |
Field RD (2020b). Using satellite estimates of precipitation for fire danger rating. In ‘Satellite precipitation measurement. Advances in Global Change Research. Vol. 69’. (Eds V Levizzani, C Kidd, D Kirschbaum, C Kummerow, K Nakamura, F Turk) pp. 1131–1154. (Springer: Cham, Switzerland) 10.1007/978-3-030-35798-6_33
Forkel M, Thonicke K, Beer C, Cramer W, Bartalev S, Schmullius C (2012) Extreme fire events are related to previous-year surface moisture conditions in permafrost-underlain larch forests of Siberia. Environmental Research Letters 7(4), 44021.
| Crossref | Google Scholar |
Gallego-Sala AV, Charman DJ, Brewer S, Page SE, Prentice IC, Friedlingstein P, Moreton S, Amesbury MJ, Beilman DW, Björck S, Blyakharchuk T, Bochicchio C, Booth RK, Bunbury J, Camill P, Carless D, Chimner RA, Clifford M, Cressey E, et al. (2018) Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nature Climate Change 8(10), 907-913.
| Crossref | Google Scholar |
Gelaro R, McCarty W, Suárez MJ, Todling R, Molod A, Takacs L, Randles C, Darmenov A, Bosilovich MG, Reichle R, Wargan K, Coy L, Cullather R, Draper C, Akella S, Buchard V, Conaty A, da Silva AM, Gu W, et al. (2017) The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate 30(14), 5419-5454.
| Crossref | Google Scholar | PubMed |
Giglio L, Boschetti L, Roy DP, Humber ML, Justice CO (2018) The Collection 6 MODIS burned area mapping algorithm and product. Remote Sensing of Environment 217, 72-85.
| Crossref | Google Scholar | PubMed |
Glauber AJ, Moyer S, Adriani M, Gunawan I (2016) The cost of fire: an economic analysis of Indonesia’s 2015 fire crisis. Indonesia Sustainable Landscapes Knowledge Note No. 1. World Bank, Jakarta. 10.1596/23840
Hantson S, Arneth A, Harrison SP, Kelley DI, Colin Prentice I, Rabin SS, Archibald S, Mouillot F, Arnold SR, Artaxo P, Bachelet D, Ciais P, Forrest M, Friedlingstein P, Hickler T, Kaplan JO, Kloster S, Knorr W, Lasslop G, et al. (2016) The status and challenge of global fire modelling. Biogeosciences 13(11), 3359-3375.
| Crossref | Google Scholar |
Holgate CM, van Dijk AIJM, Cary GJ, Yebra M (2017) Using alternative soil moisture estimates in the McArthur Forest Fire Danger Index. International Journal of Wildland Fire 26(9), 806.
| Crossref | Google Scholar |
Hooijer A, Page S, Jauhiainen J, Lee WA, Lu XX, Idris A, Anshari G (2012) Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9(3), 1053-1071.
| Crossref | Google Scholar |
Hu Y, Rein G (2022) Development of gas signatures of smouldering peat wildfire from emission factors. International Journal of Wildland Fire 31, 1014-1032.
| Crossref | Google Scholar |
Hu Y, Fernandez-Anez N, Smith TEL, Rein G (2018) Review of emissions from smouldering peat fires and their contribution to regional haze episodes. International Journal of Wildland Fire 27(5), 293-312.
| Crossref | Google Scholar |
Huang X, Rein G (2017) Downward spread of smouldering peat fire: the role of moisture, density and oxygen supply. International Journal of Wildland Fire 26(11), 907-918.
| Crossref | Google Scholar |
Huijnen V, Wooster MJ, Kaiser JW, Gaveau DLA, Flemming J, Parrington M, Inness A, Murdiyarso D, Main B, Van Weele M (2016) Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Scientific Reports 6, 26886.
| Crossref | Google Scholar | PubMed |
Janssen TAJ, Jones MW, Finney D, van der Werf GR, van Wees D, Xu W, Veraverbeke S (2023) Extratropical forests increasingly at risk due to lightning fires. Nature Geoscience 16, 1136-1144.
| Crossref | Google Scholar |
Jauhiainen J, Hooijer A, Page SE (2012) Carbon dioxide emissions from an Acacia plantation on peatland in Sumatra, Indonesia. Biogeosciences 9(2), 617-630.
| Crossref | Google Scholar |
Jones MW, Abatzoglou JT, Veraverbeke S, Andela N, Lasslop G, Forkel M, Smith AJP, Burton C, Betts RA, van der Werf GR, Sitch S, Canadell JG, Santín C, Kolden C, Doerr SH, Le Quéré C (2022) Global and regional trends and drivers of fire under climate change. Reviews of Geophysics 60(3), e2020RG000726.
| Crossref | Google Scholar |
Kasischke ES, Turetsky MR (2006) Recent changes in the fire regime across the North American boreal region – Spatial and temporal patterns of burning across Canada and Alaska. Geophysical Research Letters 33(9), L09703.
| Crossref | Google Scholar |
Kasischke ES, Williams D, Barry D (2002) Analysis of the patterns of large fires in the boreal forest region of Alaska. International Journal of Wildland Fire 11(2), 131-144.
| Crossref | Google Scholar |
Kerr YH, Waldteufel P, Wigneron JP, Delwart S, Cabot F, Boutin J, Escorihuela MJ, Font J, Reul N, Gruhier C, Juglea SE, Drinkwater MR, Hahne A, Martin-Neira M, Mecklenburg S (2010) The SMOS L: new tool for monitoring key elements of the global water cycle. Proceedings of the IEEE 98(5), 666-687.
| Crossref | Google Scholar |
Koplitz SN, Mickley LJ, Marlier ME, Buonocore JJ, Kim PS, Liu T, Sulprizio MP, DeFries RS, Jacob DJ, Schwartz J, Pongsiri M, Myers SS (2016) Public health impacts of the severe haze in Equatorial Asia in September–October 2015: demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environmental Research Letters 11(9), 094023.
| Crossref | Google Scholar |
Koster RD, Suarez MJ, Ducharne A, Stieglitz M, Kumar P (2000) A catchment-based approach to modeling land surface processes in a general circulation model 1. Model structure. Journal of Geophysical Research Atmospheres 105(D20), 24809-24822.
| Crossref | Google Scholar |
Krueger ES, Levi MR, Achieng KO, Bolten JD, Carlson JD, Coops NC, Holden ZA, Magi BI, Rigden AJ, Ochsner TE (2022) Using soil moisture information to better understand and predict wildfire danger: a review of recent developments and outstanding questions. International Journal of Wildland Fire 32(2), 111-132.
| Crossref | Google Scholar |
Leblon B, San-Miguel-Ayanz J, Bourgeau-Chavez L, Kong M (2016) 3-Remote Sensing of Wildfires. In ‘Land Surface Remote Sensing’. (Eds N Baghdadi, M Zribi) pp. 55–95. (Elsevier). 10.1016/B978-1-78548-105-5.50003-7
Leifeld J, Menichetti L (2018) The underappreciated potential of peatlands in global climate change mitigation strategies. Nature Communications 9(1), 1071.
| Crossref | Google Scholar | PubMed |
Le Page Y, Morton D, Bond-Lamberty B, Pereira JMC, Hurtt G (2015) HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers. Biogeosciences 12(3), 887-903.
| Crossref | Google Scholar |
Loisel J, Gallego-Sala AV, Amesbury MJ, Magnan G, Anshari G, Beilman DW, Benavides JC, Blewett J, Camill P, Charman DJ, Chawchai S, Hedgpeth A, Kleinen T, Korhola A, Large D, Mansilla CA, Müller J, van Bellen S, West JB, et al. (2021) Expert assessment of future vulnerability of the global peatland carbon sink. Nature Climate Change 11(1), 70-77.
| Crossref | Google Scholar |
Matondang JS, Sanjaya H, Arifandri R (2021) Development of Google Earth Engine fire weather index calculator for Indonesian Fire Danger Rating System. IOP Conference Series: Earth and Environmental Science 936(1), 012040.
| Crossref | Google Scholar |
Mezbahuddin S, Nikonovas T, Spessa A, Grant RF, Imron MA, Doerr SH, Clay GD (2023) Accuracy of tropical peat and non-peat fire forecasts enhanced by simulating hydrology. Scientific Reports 13(1), 619.
| Crossref | Google Scholar | PubMed |
Miettinen J, Shi C, Liew SC (2016) Land cover distribution in the peatlands of peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Global Ecology and Conservation 6, 67-78.
| Crossref | Google Scholar |
Mortelmans J, Felsberg A, De Lannoy GJM, Veraverbeke S, Field RD, Andela N, Bechtold M (2024) Improving the fire weather index system for peatlands using peat-specific hydrological input data. Natural Hazards and Earth System Sciences 24(2), 445-464.
| Crossref | Google Scholar |
Page S, Mishra S, Agus F, Anshari G, Dargie G, Evers S, Jauhiainen J, Jaya A, Jovani-Sancho AJ, Laurén A, Sjögersten S, Suspense IA, Wijedasa LS, Evans CD (2022) Anthropogenic impacts on lowland tropical peatland biogeochemistry. Nature Reviews Earth and Environment 3(7), 426-443.
| Crossref | Google Scholar |
Page SE, Siegert F, Rieley JO, Boehm HD, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420(6911), 61-65.
| Crossref | Google Scholar | PubMed |
Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Global Change Biology 17(2), 798-818.
| Crossref | Google Scholar |
Paulik C, Preimesberger W, s-scherrer, pstradio, Hahn S, Baum D, Plocon A, Mistelbauer T, tracyscanlon, Schmitzer M, alegrub88, teije01 (2023) TUW-GEO/pytesmo: v0.16.0. Zenodo. 10.5281/zenodo.8338451
Pelletier N, Millard K, Darling S (2023) Wildfire likelihood in Canadian treed peatlands based on remote-sensing time-series of surface conditions. Remote Sensing of Environment 296, 113747.
| Crossref | Google Scholar |
Pettinari ML, Chuvieco E (2020) Fire danger observed from space. Surveys in Geophysics 41(6), 1437-1459.
| Crossref | Google Scholar |
Purnomo DMJ, Apers S, Bechtold M, Sofan P, Rein G (2023) KAPAS II: simulation of peatland wildfires with daily variations of peat moisture content. International Journal of Wildland Fire 32(6), 823-835.
| Crossref | Google Scholar |
Reichle RH, Liu Q, Koster RD, Crow WT, De Lannoy GJM, Kimball JS, Ardizzone JV, Bosch D, Colliander A, Cosh M, Kolassa J, Mahanama SP, Prueger J, Starks P, Walker JP (2019) Version 4 of the SMAP Level-4 soil moisture algorithm and data product. Journal of Advances in Modeling Earth Systems 11(10), 3106-3130.
| Crossref | Google Scholar |
Reichle RH, Liu Q, Ardizzone JV, Bechtold M, Crow WT, De Lannoy G, Kimball JS, Koster RD (2023) Soil Moisture Active Passive (SMAP) Project Assessment Report for Version 7 of the L4_SM Data Product. NASA Technical Report Series on Global Modeling and Data Assimilation, NASA/TM-2023-104606, Vol. 64. 87 p. (NASA, Goddard Space Flight Center, Greenbelt: Maryland, USA)
Rein G (2013). Smouldering fires and natural fuels. In ‘Fire phenomena and the Earth system: an interdisciplinary guide to fire science’. (Ed. CM Belcher) pp. 15–33. (John Wiley and Sons) 10.1002/9781118529539.ch2
Rein G, Cleaver N, Ashton C, Pironi P, Torero JL (2008) The severity of smouldering peat fires and damage to the forest soil. Catena 74(3), 304-309.
| Crossref | Google Scholar |
Schroeder W, Oliva P, Giglio L, Csiszar IA (2014) The New VIIRS 375m active fire detection data product: algorithm description and initial assessment. Remote Sensing of Environment 143, 85-96.
| Crossref | Google Scholar |
Taufik M, Torfs PJJF, Uijlenhoet R, Jones PD, Murdiyarso D, Van Lanen HAJ (2017) Amplification of wildfire area burnt by hydrological drought in the humid tropics. Nature Climate Change 7(6), 428-431.
| Crossref | Google Scholar |
Taylor SW, Alexander ME (2006) Science, technology, and human factors in fire danger rating: the Canadian experience. International Journal of Wildland Fire 15(1), 121-135.
| Crossref | Google Scholar |
Torres R, Snoeij P, Geudtner D, Bibby D, Davidson M, Attema E, Potin P, Rommen BÖ, Floury N, Brown M, Traver IN, Deghaye P, Duesmann B, Rosich B, Miranda N, Bruno C, L’Abbate M, Croci R, Pietropaolo A, et al. (2012) GMES Sentinel-1 mission. Remote Sensing of Environment 120, 9-24.
| Crossref | Google Scholar |
Turetsky MR, Benscoter B, Page S, Rein G, Van Der Werf GR, Watts A (2015) Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience 8(1), 11-14.
| Crossref | Google Scholar |
Veraverbeke S, Sedano F, Hook SJ, Randerson JT, Jin Y, Rogers BM (2014) Mapping the daily progression of large wildland fires using MODIS active fire data. International Journal of Wildland Fire 23(5), 655-667.
| Crossref | Google Scholar |
Vereecken H, Weihermüller L, Assouline S, Šimůnek J, Verhoef A, Herbst M, Archer N, Mohanty B, Montzka C, Vanderborght J, Balsamo G, Bechtold M, Boone A, Chadburn S, Cuntz M, Decharme B, Ducharne A, Ek M, Garrigues S, et al. (2019) Infiltration from the Pedon to Global Grid Scales: an overview and outlook for land surface modeling. Vadose Zone Journal 18(1), 1-53.
| Crossref | Google Scholar |
Waddington JM, Thompson DK, Wotton M, Quinton WL, Flannigan MD, Benscoter BW, Baisley SA, Turetsky MR (2012) Examining the utility of the Canadian forest fire weather index system in boreal peatlands. Canadian Journal of Forest Research 42(1), 47-58.
| Crossref | Google Scholar |