Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Hyperspectral remote sensing monitoring of cyanobacteria blooms in a large South American reservoir: high- and medium-spatial resolution satellite algorithm simulation

A. Drozd A , P. de Tezanos Pinto B C F , V. Fernández A , M. Bazzalo A , F. Bordet D and G. Ibañez E
+ Author Affiliations
- Author Affiliations

A Comisión Administradora del Río Uruguay, Avenida Costanera Norte S/N, Paysandú C.C. 57097 – Uruguay.

B Instituto de Botánica Darwinion, Labardén 200, Acassuso, Buenos Aires, Argentina.

C Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina.

D Comisión Técnica Mixta, Salto Grande, Argentina, Leandro N. Alem 449, Capital Federal (C.C. 1003), Argentina.

E Comisión Nacional de Actividades Espaciales (CONAE), Belgrano 210, Oeste 10 (C.C. 5500), Mendoza, Argentina.

F Corresponding author. Email: ptezanos@darwin.edu.ar

Marine and Freshwater Research 71(5) 593-605 https://doi.org/10.1071/MF18429
Submitted: 14 November 2018  Accepted: 4 June 2019   Published: 2 September 2019

Abstract

We used hyperspectral remote sensing with the aim of establishing a monitoring program for cyanobacteria in a South American reservoir. We sampled at a wide temporal (2012–16; 10 seasons) and spatial (30 km) gradient, and retrieved 111 field hyperspectral signatures, chlorophyll-a, cyanobacteria densities and total suspended solids. The hyperspectral signatures for cyanobacteria-dominated situations (n = 75) were used to select the most suitable spectral bands in seven high- and medium-spatial resolution satellites (Sentinel 2, Landsat 5, 7 and 8, SPOT-4/5 and -6/7, WorldView 2), and for the development of chlorophyll and cyanobacteria cell abundance algorithms (λ550 – λ650 + λ800) ÷ (λ550 + λ650 + λ800). The best-performing chlorophyll algorithm was Sentinel 2 ((λ560 – λ660 + λ703) ÷ (λ560 + λ660 + λ703); R2 = 0.80), followed by WorldView 2 ((λ550 – λ660 + λ720) ÷ (λ550 + λ660 + λ720); R2 = 0.78), Landsat and the SPOT series ((λ550 – λ650 + λ800) ÷ (λ550 + λ650 + λ800); R2 = 0.67–0.74). When these models were run for cyanobacteria abundance, the coefficient of determination remained similar, but the root mean square error increased. This could affect the estimate of cyanobacteria cell abundance by ~20%, yet it still enable assessment of the alert level categories for risk assessment. The results of this study highlight the importance of the red and near-infrared region for identifying cyanobacteria in hypereutrophic waters, demonstrating coherence with field cyanobacteria abundance and enabling assessment of bloom distribution in this ecosystem.

Additional keywords: Dolichospermum, Microcystis, Salto Grande Reservoir.


References

Alikas, K., Kangro, K., and Reinart, A. (2010). Detecting cyanobacterial blooms in large North European lakes using the maximum chlorophyll index. Oceanologia 52, 237–257.
Detecting cyanobacterial blooms in large North European lakes using the maximum chlorophyll index.Crossref | GoogleScholarGoogle Scholar |

American Public Health Association (2005). ‘Standard Methods for the Examination of Water and Wastewaters’, 21st edn. (APHA: Washington, DC, USA.)

Bernstein, L. S., Adler-Golden, S. M., Sundberg, R. L., Levine, R., Perkins, T., Berk, A., Ratkowski, A., Felde, G., and Hoke, M. (2005). Validation of the quick atmospheric correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery. SPIE Proceedings 5806, 668–678.
Validation of the quick atmospheric correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery.Crossref | GoogleScholarGoogle Scholar |

Bernstein, L. S., Adler-Golden, S. M., Sundberg, R. L., and Ratkowski, A. J. (2006). Improved reflectance retrieval from hyper- and multispectral imagery without prior scene or sensor information. SPIE Proceedings 6362, 63622P.
Improved reflectance retrieval from hyper- and multispectral imagery without prior scene or sensor information.Crossref | GoogleScholarGoogle Scholar |

Bordet, F., Fontanarrosa, M. S., and O’Farrell, I. (2017). Influence of light and mixing regime on bloom-forming phytoplankton in a subtropical reservoir. River Research and Applications 33, 1315–1326.
Influence of light and mixing regime on bloom-forming phytoplankton in a subtropical reservoir.Crossref | GoogleScholarGoogle Scholar |

Cannizzaro, J. P., and Carder, K. L. (2006). Estimating chlorophyll-a concentrations from remote-sensing reflectance in optically shallow waters. Remote Sensing of Environment 101, 13–24.
Estimating chlorophyll-a concentrations from remote-sensing reflectance in optically shallow waters.Crossref | GoogleScholarGoogle Scholar |

Chorus, I., and Bartram, J. (Eds) (1999). Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. (World Health Organization: Geneva, Switzerland.) Available at http://www.who.int/iris/handle/10665/42827 [Verified 15 July 2019].

Cicerelli, R. E., Trindade Galo, M. L. B., and Llacer Roig, H. (2017). Multisource data for seasonal variability analysis of cyanobacteria in a tropical inland aquatic environment. Marine and Freshwater Research 68, 2344–2354.
Multisource data for seasonal variability analysis of cyanobacteria in a tropical inland aquatic environment.Crossref | GoogleScholarGoogle Scholar |

Comisión Administradora del Río Uruguay (2016). Estudio de la calidad del agua en el Río Uruguay en el bienio 2013–2014: vigilancia de playas y estado trófico. Informe Técnico, CARU, Paysandú, Uruguay.

Dall’Olmo, G., Gitelson, A. A., Rundquist, D. C., Leavitt, B., Barrow, T., and Holz, J. C. (2005). Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands. Remote Sensing of Environment 96, 176–187.
Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands.Crossref | GoogleScholarGoogle Scholar |

Dogliotti, A. I., Camiolo, M., Simionato, C., Jaureguizar, A., Guerrero, R., and Lasta, C. (2014). First optical observations in the turbidity maximum zone in the Río de La Plata estuary: a challenge for atmospheric correction algorithms. In ‘Ocean Optics XXII Conference’, 26–31 October 2014, Portland, OR, USA, pp. 26–31. Available at https://digital.cic.gba.gob.ar/bitstream/handle/11746/5680/First%20optical%20observations.pdf-PDFA.pdf?sequence=1&isAllowed=y [Verified 27 August 2019].

Dörnhöfer, K., and Oppelt, N. (2016). Remote sensing for lake research and monitoring – recent advantages. Ecological Indicators 64, 105–122.
Remote sensing for lake research and monitoring – recent advantages.Crossref | GoogleScholarGoogle Scholar |

Ferral, A., Solis, V., Frery, A., Aleksinko, A., Bernasconi, I., and Scavuzzo, M. C. (2018). In situ and satellite monitoring of the water quality of a eutrophic lake intervened with a system of artificial aeration. IEEE Latin America Transactions 16, 627–633.
In situ and satellite monitoring of the water quality of a eutrophic lake intervened with a system of artificial aeration.Crossref | GoogleScholarGoogle Scholar |

Gangi, D. (2016). Caracterización del riesgo sanitario asociado a los crecimientos masivos de cianobacterias potencialmente toxicas en el Río Uruguay y particularmente en el embalse de Salto Grande, Provincia de Entre Ríos, Argentina. Informe final, Beca Oñativia, Ministerio de Salud de la Nación. Dirección de Investigación para la Salud, Argentina.

German, A. (2017) Alerta de explosiones algales en el Embalse San Roque a partir de datos satelitales diarios y nediciones de Campo. M.Sc. Thesis, Instituto Gulich, Comisión Nacional de Actividades Espaciales, Universidad Nacional de Cordoba, Córdoba, Argentina.

Giardino, C., Bresciani, M., Villa, P., and Martinelli, A. (2010). Application of remote sensing in water resource management: the case study of Lake Trasimeno, Italy. Water Resources Management 24, 3885–3899.
Application of remote sensing in water resource management: the case study of Lake Trasimeno, Italy.Crossref | GoogleScholarGoogle Scholar |

Gitelson, A., Szilagyi, F., and Mittenzwey, K. H. (1993). Improving quantitative remote sensing for monitoring of inland water quality. Water Resources 27, 1185–1194.

Gitelson, A., Dall’Olmo, G., Moses, W., Rundquist, D., Barrow, T., Fisher, R., Gurlin, G., and Holz, J. (2008). A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation. Remote Sensing of Environment 112, 3582–3593.
A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation.Crossref | GoogleScholarGoogle Scholar |

Hadjimitsis, D. G., Hadjimitsis, M. G., Toulios, L., and Clayton, C. (2010). Use of space technology for assisting water quality assessment and monitoring of inland water bodies. Physics and Chemistry of the Earth 35, 115–120.
Use of space technology for assisting water quality assessment and monitoring of inland water bodies.Crossref | GoogleScholarGoogle Scholar |

Hu, C., Lee, Z., Ma, R., Yu, K., Li, D., and Shang, S. (2010). Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. Journal of Geophysical Research. Oceans 115, 1–20.
Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China.Crossref | GoogleScholarGoogle Scholar |

Hunter, P. D., Tyler, A. N., Présing, M., Kovács, A. W., and Preston, T. (2008). Spectral discrimination of phytoplankton colour groups: the effect of suspended particulate matter and sensor spectral resolution. Remote Sensing of Environment 112, 1527–1544.
Spectral discrimination of phytoplankton colour groups: the effect of suspended particulate matter and sensor spectral resolution.Crossref | GoogleScholarGoogle Scholar |

Jensen, J. (2000). ‘Remote Sensing of Environment.’ (Prentice Hall: Upper Saddle, NJ, USA.)

Jupp, D. L. B., Kirk, J. T. O., and Harris, G. P. (1994). Detection, identification and mapping of cyanobacteria – using remote sensing to measure the optical quality of turbid inland waters. Marine and Freshwater Research 45, 801–828.
Detection, identification and mapping of cyanobacteria – using remote sensing to measure the optical quality of turbid inland waters.Crossref | GoogleScholarGoogle Scholar |

Kahru, M., Savchuk, O. P., and Elmgren, R. (2007). Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability. Marine Ecology Progress Series 343, 15–23.
Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability.Crossref | GoogleScholarGoogle Scholar |

Kallio, K., Koponen, S., and Pulliainen, J. (2003). Feasibility of airborne imaging spectrometry for lake monitoring – a case study of spatial chlorophyll a distribution in two meso-eutrophic lakes. International Journal of Remote Sensing 24, 3771–3790.
Feasibility of airborne imaging spectrometry for lake monitoring – a case study of spatial chlorophyll a distribution in two meso-eutrophic lakes.Crossref | GoogleScholarGoogle Scholar |

Klemas, V. (2012). Remote sensing of algal blooms: an overview with case studies. Journal of Coastal Research 278, 34–43.
Remote sensing of algal blooms: an overview with case studies.Crossref | GoogleScholarGoogle Scholar |

Kutser, T. (2004). Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnology and Oceanography 49, 2179–2189.
Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing.Crossref | GoogleScholarGoogle Scholar |

Li, L., Lin, L., and Song, K. (2015). Remote sensing of freshwater cyanobacteria: extend IOP Inversion Model of Inland Waters (IIMIW) to partition absorption coefficient and estimate phycocyanin. Remote Sensing of Environment 157, 9–23.
Remote sensing of freshwater cyanobacteria: extend IOP Inversion Model of Inland Waters (IIMIW) to partition absorption coefficient and estimate phycocyanin.Crossref | GoogleScholarGoogle Scholar |

Lin, S., Qi, J., Jones, J. R., Stevenson, R. J., Dekker, A. G., and Peters, S. W. M. (2018). Effects of sediments and coloured dissolved organic matter on remote sensing of chlorophyll-a using Landsat TM/ETM+ over turbid waters. International Journal of Remote Sensing 39, 1421–1440.
Effects of sediments and coloured dissolved organic matter on remote sensing of chlorophyll-a using Landsat TM/ETM+ over turbid waters.Crossref | GoogleScholarGoogle Scholar |

Lorenzen, C. J. (1967). Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnology and Oceanography 12, 343–346.
Determination of chlorophyll and phaeopigments: spectrophotometric equations.Crossref | GoogleScholarGoogle Scholar |

Lunetta, R. S., Schaeffer, B. A., Stumpf, R. P., Keith, D., Jacobs, S. A., and Murphy, M. S. (2015). Evaluation of cyanobacteria cell count detection derived from MERIS imagery across the eastern USA. Remote Sensing of Environment 157, 24–34.
Evaluation of cyanobacteria cell count detection derived from MERIS imagery across the eastern USA.Crossref | GoogleScholarGoogle Scholar |

Mobley, C. D. (1999). Estimation of the remote-sensing reflectance from above-surface measurements. Applied Optics 38, 7442–7455.
Estimation of the remote-sensing reflectance from above-surface measurements.Crossref | GoogleScholarGoogle Scholar | 18324298PubMed |

Nusch, E. A. (1980). Comparison of different methods for chlorophyll and phaeopigments determination. Fundamental and Applied Limnology 14, 14–36.

O’Farrell, I., Bordet, F., and Chaparro, G. (2012). Bloom forming cyanobacterial complexes co-occurring in a subtropical large reservoir: validation of dominant eco-strategies. Hydrobiologia 698, 175–190.
Bloom forming cyanobacterial complexes co-occurring in a subtropical large reservoir: validation of dominant eco-strategies.Crossref | GoogleScholarGoogle Scholar |

Olmanson, L. G., Bauer, M. E., and Brezonik, P. L. (2008). A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sensing of Environment 112, 4086–4097.
A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes.Crossref | GoogleScholarGoogle Scholar |

Östlund, C., Flink, P., Strömbeck, N., Pierson, D., and Lindell, T. (2001). Mapping of the water quality of Lake Erken, Sweden, from imaging spectrometry and Landsat Thematic Mapper. The Science of the Total Environment 268, 139–154.
Mapping of the water quality of Lake Erken, Sweden, from imaging spectrometry and Landsat Thematic Mapper.Crossref | GoogleScholarGoogle Scholar | 11315737PubMed |

Palmer, S. C. J., Kutser, T., and Hunter, P. D. (2015). Remote sensing of inland waters: challenges, progress and future directions. Remote Sensing of Environment 157, 1–8.
Remote sensing of inland waters: challenges, progress and future directions.Crossref | GoogleScholarGoogle Scholar |

Randolph, K., Wilson, J., Tedesco, L., Li, L., Pascual, D. L., and Soyeux, E. (2008). Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin. Remote Sensing of Environment 112, 4009–4019.
Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin.Crossref | GoogleScholarGoogle Scholar |

Reynolds, C. S., and Jaworski, G. H. M. (1978). Enumeration of natural Microcystis populations. British Phycological Journal 13, 269–277.
Enumeration of natural Microcystis populations.Crossref | GoogleScholarGoogle Scholar |

Rojas, A., and Saluso, J. H. (1987). Informe Climático de la Provincia de Entre Ríos. INTA EEA Paraná, Publicación Técnica número 14, Entre Ríos, Argentina.

Ruddick, K. G., Gons, H. J., Rijkeboer, M., and Tilstone, G. (2001). Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties. Applied Optics 40, 3575–3585.
Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties.Crossref | GoogleScholarGoogle Scholar | 18360387PubMed |

Shi, K., Zhang, Y., Xu, H., Zhu, G., Qin, B., Huang, C., Liu, X., Zhouy, Y., and Lv, H. (2015). Long-term satellite observations of microcystin concentrations in Lake Taihu during cyanobacterial bloom periods. Environmental Science & Technology 49, 6448–6456.
Long-term satellite observations of microcystin concentrations in Lake Taihu during cyanobacterial bloom periods.Crossref | GoogleScholarGoogle Scholar |

Simis, S. G. H., Peters, S. W. M., and Gons, H. J. (2005). Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnology and Oceanography 50, 237–245.
Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water.Crossref | GoogleScholarGoogle Scholar |

Stumpf, R. P., Wynne, T. T., Baker, D. B., and Fahnenstiel, G. L. (2012). Interannual variability of cyanobacterial blooms in Lake Erie. PLoS One 7, e42444.
Interannual variability of cyanobacterial blooms in Lake Erie.Crossref | GoogleScholarGoogle Scholar | 22870327PubMed |

Stumpf, R. P., Davis, T. W., Wynne, T. T., Graham, J. L., Loftin, K. A., Johengen, T. H., Gossiaux, D., Palladino, D., and Burtner, A. (2016). Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. Harmful Algae 54, 160–173.
Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 28073474PubMed |

Tebbs, E. J., Remedios, J. J., and Harper, D. M. (2013). Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline-alkaline, flamingo lake, using Landsat ETM+. Remote Sensing of Environment 135, 92–106.
Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline-alkaline, flamingo lake, using Landsat ETM+.Crossref | GoogleScholarGoogle Scholar |

Torbick, N., Hu, F., Zhang, J., Qi, J., Zhang, H., and Becker, B. (2008). Mapping chlorophyll-a concentrations in West Lake, China using Landsat 7 ETM+. Journal of Great Lakes Research 34, 559–565.
Mapping chlorophyll-a concentrations in West Lake, China using Landsat 7 ETM+.Crossref | GoogleScholarGoogle Scholar |

Utermöhl, H. (1958). Zur Vervollkommung der quantitativen Phytoplankton Methodik. Internationale Vereingung fur Theoretische und Angewandte Limnologie: Mitteilungen 9, 1–38.

Venrick, E. L. (1978). How many cells to count? In ‘Phytoplankton Manual’. (Ed. A. Sournia.) pp. 167–168. (UNESCO Press: Paris, France.)

Wang, Y., Xia, H., Fu, J., and Sheng, G. (2004). Water quality change in reservoirs of Shenzhen, China: detection using LANDSAT/TM data. The Science of the Total Environment 328, 195–206.
Water quality change in reservoirs of Shenzhen, China: detection using LANDSAT/TM data.Crossref | GoogleScholarGoogle Scholar | 15207584PubMed |

Wynne, T. T., Stumpf, R. P., Tomlinson, M. C., Fahnenstiel, G. L., Dyble, J., Schwab, D. J., and Joshi, S. J. (2013). Evolution of a cyanobacterial bloom forecast system in western Lake Erie: development and initial evaluation. Journal of Great Lakes Research 39, 90–99.
Evolution of a cyanobacterial bloom forecast system in western Lake Erie: development and initial evaluation.Crossref | GoogleScholarGoogle Scholar |

Yacobi, Y. Z., Gitelson, A., and Mayo, M. (1995). Remote sensing of chlorophyll in Lake Kinneret using high spectral-resolution radiometer and Landsat TM: spectral features of reflectance and algorithm development. Journal of Plankton Research 17, 2155–2173.
Remote sensing of chlorophyll in Lake Kinneret using high spectral-resolution radiometer and Landsat TM: spectral features of reflectance and algorithm development.Crossref | GoogleScholarGoogle Scholar |

Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., Xu, B., Shi, J., and Dickinson, R. (2013). The role of satellite remote sensing in climate change studies. Nature Climate Change 3, 875–883.
The role of satellite remote sensing in climate change studies.Crossref | GoogleScholarGoogle Scholar |

Zimba, P. V., and Gitelson, A. (2006). Remote estimation of chlorophyll concentration in hyper-eutrophic aquatic systems: model tuning and accuracy optimization. Aquaculture 256, 272–286.
Remote estimation of chlorophyll concentration in hyper-eutrophic aquatic systems: model tuning and accuracy optimization.Crossref | GoogleScholarGoogle Scholar |