Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Contrasting and complex evolutionary histories within the terapontid grunter genus Hephaestus revealed by nuclear and mitochondrial genes

Bradley J. Pusey A C , Andrew Bentley B , Damien Burrows A , Colton Perna A , Aaron Davis A and Jane Hughes B
+ Author Affiliations
- Author Affiliations

A Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville, Qld 4811, Australia.

B Australian Rivers Institute, Griffith University, Nathan, Qld 4111, Australia.

C Corresponding author. Email: bpusey@westnet.com.au

Marine and Freshwater Research 67(12) 1813-1825 https://doi.org/10.1071/MF15198
Submitted: 21 May 2015  Accepted: 13 November 2015   Published: 12 January 2016

Abstract

Contrasting evolutionary histories may be revealed by mitochondrial and nuclear information. Divergent New Guinean and eastern and western Australian lineages of Hephaestus fuliginosus (sooty grunter) were detected using mitochondrial data, with the extent of divergence consistent with cryptic speciation events. However, this phylogeographic pattern was not supported by nuclear gene data, and evidence for cryptic speciation appears driven almost entirely by introgression between H. fuliginosus and congeners on the periphery of its distribution (e.g. with H. tulliensis, H. jenkinsi or H. roemeri). Hephaestus fuliginosus is a single species with a complex evolutionary history. Introgression on the eastern coast is consistent with transfer of the mitochondrial genome of the resident species (H. tulliensis) to the invading species (H. fuliginosus) and may have provided the metabolic capacity for H. fuliginosus to spread into the cooler rainforest environment of the Wet Tropics region. Mitochondrial and nuclear analyses both identified the genus Hephaestus as polyphyletic with H. carbo and H. habbemai placed in a clade with Leiopotherapon unicolor and Amniataba percoides. The present study demonstrated the need to consider a variety of genetic information when assessing species identity in a widespread species and the need for a systematic revision of the genus and family as a whole.

Additional keywords: introgression, phylogeography, sooty grunter, species complex, Terapontidae.


References

Allen, G. R. (1991). ‘Field Guide to the Freshwater Fishes of New Guinea.’ (Christensen Research Institute: Madang, Papua New Guinea.)

Allen, G. R., and Jebb, J. (1993). A collection of fishes from the upper Purari River system, Papua New Guinea, with descriptions of two new species (Terapontidae and Eleotridae). Ichthyological Explorations in Freshwaters 4, 233–240.

Allen, G., and Pusey, B. (1999). Hephaestus tulliensis De Vis, a valid species of grunter (Terapontidae) from freshwaters of north-eastern Queensland, Australia. Aqua. Journal of Ichthyology and Aquatic Biology 3, 157–162.

Allen, G. R., Midgley, S. H., and Allen, M. (2002). ‘Field Guide to the Freshwater Fishes of Australia.’ (Western Australian Museum: Perth.)

Avise, J. C., and Wollenberg, K. (1997). Phylogenetics and the origin of species. Proceedings of the National Academy of Sciences of the United States of America 94, 7748–7755.
Phylogenetics and the origin of species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksl2nsLc%3D&md5=86701abc9e95a1e304d6d932f8efd4b3CAS | 9223259PubMed |

Baele, G., Lemey, P., Bedford, T., Rambaut, A., Suchard, M. A., and Alekseyenko, A. V. (2012). Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Molecular Biology and Evolution 29, 2157–2167.
Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1KjsbvL&md5=fea23506e8c371a58d1724bceae2c8d0CAS | 22403239PubMed |

Baele, G., Lemey, P., and Vansteelandt, S. (2013). Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution. BMC Bioinformatics 14, 85.
Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution.Crossref | GoogleScholarGoogle Scholar | 23497171PubMed |

Ballard, J. W. O., and Whitlock, M. C. (2004). The incomplete natural history of mitchondria. Molecular Ecology 13, 729–744.
The incomplete natural history of mitchondria.Crossref | GoogleScholarGoogle Scholar |

Bostock, B. M., Adams, M., Laurenson, L. J. B., and Austin, C. M. (2006). The molecular systematics of Leiopotherapon unicolor (Günther, 1859): testing for cryptic speciation in Australia’s most widespread freshwater fish. Biological Journal of the Linnean Society. Linnean Society of London 87, 537–552.
The molecular systematics of Leiopotherapon unicolor (Günther, 1859): testing for cryptic speciation in Australia’s most widespread freshwater fish.Crossref | GoogleScholarGoogle Scholar |

Brizga, S. B., Davis, J., Hogan, A., O’Connor, R., Pearson, R., Pusey, B., and Werren, G. (2001). Barron Basin Water Assessment Management Program. Technical report 4: environmental investigations. Department of Natural Resources, Brisbane.

Burrows, D. W. (2002). Fish stocking and the distribution and potential impact of translocated fishes in streams of the Wet Tropics region, northern Queensland. ACTFR report number 02/04. Report to the Wet Tropics Management Agency, James Cook University, Townsville, Qld, Australia.

Chan, T., Hart, B., Kennard, M., Pusey, B., Shenton, W., Douglas, M., Valentine, E., and Patel, S. (2012). Bayesian networking models for environmental flow decision making: 2. Daly River, Northern Territory, Australia. River Research and Applications 28, 283–301.
Bayesian networking models for environmental flow decision making: 2. Daly River, Northern Territory, Australia.Crossref | GoogleScholarGoogle Scholar |

Chow, S., and Hazama, K. (1998). Universal PCR primers for S7 ribosomal protein gene introns in fish. Molecular Ecology Primer Note 7, 1255–1256.
| 1:CAS:528:DyaK1cXmtFOitrw%3D&md5=fc92acb49ae7abeaa06b45395c4708eeCAS |

Cook, B. D., Bunn, S. E., and Hughes, J. M. (2007). A comparative analysis of population structuring and genetic diversity in sympatric lineages of freshwater shrimp (Atyidae: Paratya): concerted or independent responses to hydrographic factors? Freshwater Biology 52, 2156–2171.
A comparative analysis of population structuring and genetic diversity in sympatric lineages of freshwater shrimp (Atyidae: Paratya): concerted or independent responses to hydrographic factors?Crossref | GoogleScholarGoogle Scholar |

Cook, B. D., Kennard, M. J., Real, K., Pusey, B. J., and Hughes, J. M. (2011). Landscape genetic analysis of the tropical freshwater fish Mogurnda mogurnda (Eleotridae) in a monsoonal river basin: importance of hydrographic factors and population history. Freshwater Biology 56, 812–827.
Landscape genetic analysis of the tropical freshwater fish Mogurnda mogurnda (Eleotridae) in a monsoonal river basin: importance of hydrographic factors and population history.Crossref | GoogleScholarGoogle Scholar |

Currat, M., Ruedi, M., Petit, R. J., and Excoffier, L. (2008). The hidden side of invasions: massive introgression by local genes. Evolution 62, 1908–1920.
| 18452573PubMed |

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772–772.
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWmsbfP&md5=ba5cd35bab1d0c074cc9fc79ec193de0CAS | 22847109PubMed |

Davis, A. M., Unmack, P. J., Pusey, B. J., Johnson, J. B., and Pearson, R. G. (2012). Marine–freshwater transitions are associated with the evolution of dietary diversification in terapontid grunters (Teleostei: Terapontidae). Journal of Evolutionary Biology 25, 1163–1179.
Marine–freshwater transitions are associated with the evolution of dietary diversification in terapontid grunters (Teleostei: Terapontidae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38rms1GlsA%3D%3D&md5=fd2640943b8b0d7803b81286ee31e806CAS | 22519660PubMed |

Davis, A. M., Unmack, P. J., Pusey, B. J., Pearson, R. G., and Morgan, D. L. (2013). Ontogenetic development of intestinal length and relationship to diet in an Australasian fish family (Terapontidae). BMC Evolutionary Biology 13, 53.
Ontogenetic development of intestinal length and relationship to diet in an Australasian fish family (Terapontidae).Crossref | GoogleScholarGoogle Scholar | 23441994PubMed |

De Vis, C. W. (1884). New Australian fishes in the Queensland Museum. Proceedings of the Linnean Society of New South Wales 9, 389–400.

Doyle, J. J., and Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of leaf tissue. Phytochemistry Bulletin 19, 11–15.

Drummond, A., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar | 17996036PubMed |

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFagu7fO&md5=adcc5f4b57090af1f2a7796227d17e12CAS | 22367748PubMed |

Earl, D., and von Holdt, B. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4, 359–361.
STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method.Crossref | GoogleScholarGoogle Scholar |

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisF2ks7w%3D&md5=eed91ec94ed694f3c3a3eaa725d81f9eCAS | 15034147PubMed |

Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14, 2611–2620.
Detecting the number of clusters of individuals using the software structure: a simulation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvF2qtrg%3D&md5=f1e687e3c48a9420af129f3b3675b00aCAS | 15969739PubMed |

Excoffier, L., and Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564–567.
Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.Crossref | GoogleScholarGoogle Scholar | 21565059PubMed |

Excoffier, L., Foll, M., and Petit, R. J. (2009). Genetic consequences of range expansions. Annual Review of Ecology Evolution and Systematics 40, 481–501.
Genetic consequences of range expansions.Crossref | GoogleScholarGoogle Scholar |

Funk, D. J., and Omland, K. E. (2003). Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics 34, 397–423.
Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Gelman, A., and Meng, X.-L. (1998). Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Statistical Science 13, 163–185.
Simulating normalizing constants: from importance sampling to bridge sampling to path sampling.Crossref | GoogleScholarGoogle Scholar |

Hermoso, V., Kennard, M., Pusey, B., and Douglas, M. (2011). Identifying priority areas for the conservation of freshwater biodiversity. In ‘Aquatic Biodiversity of the Wet–Dry Tropics of Northern Australia: Patterns, Threats and Future’. (Ed. B. J. Pusey.) pp. 133–149. (Charles Darwin University Press: Darwin.)

Huey, J. A., Cook, B. D., Unmack, P. J., and Hughes, J. M. (2014). Broadscale phylogeographic structure of five freshwater fishes across the Australian monsoonal tropics. Freshwater Science 33, 273–287.
Broadscale phylogeographic structure of five freshwater fishes across the Australian monsoonal tropics.Crossref | GoogleScholarGoogle Scholar |

Jamandre, B., Real, K., and Hughes, J. (2012). Characterisation of polymorphic microsatellite loci in Hephaestus fuliginosus and cross-amplification in closely related Hephaestus tulliensis. Conservation Genetics Resources 4, 213–216.
Characterisation of polymorphic microsatellite loci in Hephaestus fuliginosus and cross-amplification in closely related Hephaestus tulliensis.Crossref | GoogleScholarGoogle Scholar |

Kass, R. E., and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association 90, 773–795.
Bayes factors.Crossref | GoogleScholarGoogle Scholar |

Macleay, W. (1883). Notes on a collection of fishes from the Burdekin and Mary rivers, Queensland. Proceedings of the Linnean Society of New South Wales 8, 199–213.

Mees, G. (1971). Revision notes on some species of the Genus Therapon (Pisces, Terapontidae). Zoölogische Mededeelingen 45, 197–224.

Mees, G. F., and Kailola, P. J. (1977). The freshwater Terapontidae of New Guinea. Zoölogische Verhandelingen 153, 2–89.

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. In ‘Gateway Computing Environments Workshop (GCE), 2010’, 14 November 2010, New Orleans, LA, USA. pp. 1–8. (Institute of Electrical and Electronic Engineers: Piscataway, NJ, USA.)10.1109/GCE.2010.5676129

Morgan, D. L., and Gill, H. S. (2006). Osteology of the first dorsal fin in two terapontid fish, Leiopotherapon unicolor (Günther 1859) and Amniataba caudavittata (Richardson, 1845) from Western Australia: evidence for hybridisation. Records of the Western Australian Museum 23, 133–144.

Neigel, J. E., and Avise, J. C. (1986). Phylogenetic relationships of mito-chondrial DNA under various demographic models of speciation. In ‘Evolutionary Processes and Theory’. (Eds E. Nevo and S. Karlin.) pp. 515–553. (Academic Press: New York.)

Newton, M., and Raftery, A. (1994). Approximate Bayesian inference with the weighted likelihood bootstrap. Journal of the Royal Statistical Society. Series B. Methodological 56, 3–48.

Ogata, Y. (1989). A Monte Carlo method for high dimensional integration. Numerische Mathematik 55, 137–157.
A Monte Carlo method for high dimensional integration.Crossref | GoogleScholarGoogle Scholar |

Ogilby, J. D., and McCulloch, A. R. (1916). A revision of the Australian therapons with notes on some Papuan species. Memoirs of the Queensland Museum 5, 99–126.

Olden, J. D., Kennard, M. J., and Pusey, B. J. (2008). Species invasions and the changing biogeography of Australian freshwater fishes. Global Ecology and Biogeography 17, 25–37.

Palumbi, S. R., Martin, A. P., Romano, S., McMillan, W. O., Stice, L., and Grabowski, G. (1991). ‘The Simple Fool’s Guide to PCR, Version 2.0. Zoology.’ (University of Hawaii: Honolulu, HI.)

Paxton, J. R., Hoese, D. F., Allen, G. R., and Hanley, J. E. (1989). ‘Zoological Catalogue of Australia. Vol. 7. Pisces. Petromyzontidae to Carangidae.’ (AGPS: Canberra.)

Posada, D., and Buckley, T. R. (2004). Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53, 793–808.
Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests.Crossref | GoogleScholarGoogle Scholar | 15545256PubMed |

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
| 1:STN:280:DC%2BD3cvislKrtA%3D%3D&md5=66ce2554c41294b6e14ab9910238e6bcCAS | 10835412PubMed |

Pusey, B. J., Arthington, A. H., and Read, M. G. (1998). Freshwater fishes of the Burdekin River, Australia: bigeography, history and spatial variation in community structure. Environmental Biology of Fishes 53, 303–318.
Freshwater fishes of the Burdekin River, Australia: bigeography, history and spatial variation in community structure.Crossref | GoogleScholarGoogle Scholar |

Pusey, B., Kennard, M., and Arthington, A. (2004). ‘Freshwater Fishes of North-eastern Australia.’ (CSIRO Publishing: Melbourne.)

Rendahl, H (1922). A contribution to the ichthyology of north-west Australia. Saertryk v Nyt Magazin for Naturvidenskaberne 5, 163–197.

Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution 43, 223–225.
Analyzing tables of statistical tests.Crossref | GoogleScholarGoogle Scholar |

Ropiquet, A., and Hassanin, A. (2006). Hybrid origin of the Pliocene ancestor of wild goats. Molecular Phylogenetics and Evolution 41, 395–404.
Hybrid origin of the Pliocene ancestor of wild goats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVagtbzI&md5=efa54906ddfacc1cf08b00923c7b2a7cCAS | 16837213PubMed |

Rourke, M. L., and Gilligan, D. M. (2015). Complex biogeography and historic translocations lead to complicated phylogeographic structure of freshwater eel-tailed catfish (Tandanus spp.) in south-eastern Australia. Conservation Genetics 16, 777–790.
Complex biogeography and historic translocations lead to complicated phylogeographic structure of freshwater eel-tailed catfish (Tandanus spp.) in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Rubinoff, D., and Holland, B. S. (2005). Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Systematic Biology 54, 952–961.
Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference.Crossref | GoogleScholarGoogle Scholar | 16385775PubMed |

Schuelke, M. (2000). An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18, 233–234.
An economic method for the fluorescent labeling of PCR fragments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVOksbk%3D&md5=254d5de740dc6a6d3e0c292bc9ff062fCAS | 10657137PubMed |

Stamatakis, A., Ott, M., and Ludwig, T. (2005). RAxML-OMP: an efficient program for phylogenetic inference on SMPs. In ‘Proceedings of 8th International Conference on Parallel Computing Technologies (PaCT2005)’, 5–9 September 2005, Krasnoyarsk, Russia. (Ed. V. Malyshin.) pp. 288–302. (Springer Verlag: Berlin.)

Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A fast bootstrapping algorithm for the RAxML Web-Servers. Systematic Biology 57, 758–771.
A fast bootstrapping algorithm for the RAxML Web-Servers.Crossref | GoogleScholarGoogle Scholar | 18853362PubMed |

Swales, S., Storey, A. W., and Bakowa, K. A. (2000). Temporal and spatial variations in fish catches in the Fly River system in Papua New Guinea and the possible effects of the Ok Tedi copper mine. Environmental Biology of Fishes 57, 75–95.
Temporal and spatial variations in fish catches in the Fly River system in Papua New Guinea and the possible effects of the Ok Tedi copper mine.Crossref | GoogleScholarGoogle Scholar |

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
MEGA6: molecular evolutionary genetics analysis version 6.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKhurzP&md5=ae5e984ff6f8cb0e4cca6c3287746a06CAS | 24132122PubMed |

Toews, D. P., and Brelsford, A. (2012). The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology 21, 3907–3930.
The biogeography of mitochondrial and nuclear discordance in animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Cgt7rE&md5=6cb3562f673faa3d8bf5b6a6b381e835CAS | 22738314PubMed |

Unmack, P. J. (2013). Biogeography. In ‘The Ecology of Australian Freshwater Fishes’. (Eds P. Humphries and K. Walker.) pp. 25–48. (CSIRO Publishing: Melbourne.)

Unmack, P. J., and Dowling, T. E. (2010). Biogeography of the genus Craterocephalus (Teleostei: Atherinidae) in Australia. Molecular Phylogenetics and Evolution 55, 968–984.
Biogeography of the genus Craterocephalus (Teleostei: Atherinidae) in Australia.Crossref | GoogleScholarGoogle Scholar | 20172031PubMed |

Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., and Shipley, P. (2004). Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535–538.
Micro-checker: software for identifying and correcting genotyping errors in microsatellite data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFOktb8%3D&md5=ef2000248f2bb58bef70f9977c655eadCAS |

Vari, R. P. (1978). The terapon perches (Percoidei, Terapontidae): a cladistic analysis and taxonomic revision. Bulletin of the American Museum of Natural History 159, 175–340.

Whitley, G. P. (1945). New sharks and fishes from Western Australia (Part 2). Australian Zoologist 11, 1–42.

Whitley, G. P. (1948). Studies in Ichthyology, number 13. Records of the Australian Museum 22, 70–94.
Studies in Ichthyology, number 13.Crossref | GoogleScholarGoogle Scholar |

Xie, W., Lewis, P. O., Fan, Y., Kuo, L., and Chen, M.-H. (2011). Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology 60, 150–160.
Improving marginal likelihood estimation for Bayesian phylogenetic model selection.Crossref | GoogleScholarGoogle Scholar | 21187451PubMed |