Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW

Understanding octopus growth: patterns, variability and physiology

J. M. Semmens A G , G. T. Pecl A , R. Villanueva B , D. Jouffre C , I. Sobrino D , J. B. Wood E and P. R. Rigby F
+ Author Affiliations
- Author Affiliations

A Marine Research Laboratories, Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia.

B Institut de Ciencies del Mar (CSIC), Passeig Maritim 37-49, E-08003 Barcelona, Spain.

C Institut de recherche pour le développement (IRD), Centre de Recherche Halieutique Méditerranéenne et Tropicale, Avenue Jean Monnet, B.P. 171, 34203 Sète Cédex, France.

D Instituto Español de Oceanografía, Unidad de Cádiz, Apdo. 2609, 11006 Cadiz, Spain.

E The Bermuda Biological Station for Research, 17 Biological Lane, Ferry Reach, St. George’s GE 01, Bermuda.

F Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan.

G Corresponding author. Email: jayson.semmens@utas.edu.au

Marine and Freshwater Research 55(4) 367-377 https://doi.org/10.1071/MF03155
Submitted: 7 October 2003  Accepted: 30 March 2004   Published: 22 June 2004

Abstract

Octopuses are generally characterised by rapid non-asymptotic growth, with high individual variability. However, in situ octopus growth is not well understood. The lack of an ageing method has resulted in the majority of our understanding of octopus growth coming from laboratory studies. Despite not being applicable to cephalopods, Modal Progression Analysis (MPA) of length–frequency data is the most common method for examining in situ octopus growth. Recently, counting growth increments in beaks and vestigial shells, and quantifying lipofuscin in brain tissue, have all shown promise for the ageing octopus. Octopuses generally demonstrate two-phase growth in the laboratory, with physiological changes possibly associated with the switch between an initial rapid exponential phase and a slower power growth phase. Temperature and food ration and quality are key factors influencing the initial growth phase. Temperature, however, does not appear to affect the second phase in any consistent way, perhaps because maturity stage can influence the growth response. There may be basic differences in the mechanisms of octopus muscle growth compared with that of other cephalopods. Furthermore, higher relative maintenance energy expenditure, along with the low energy content of their prey, may account for the relatively slow growth of deep-sea octopuses compared to littoral species.

Extra keywords: ageing, cephalopod, growth, growth modelling, octopus.


Acknowledgments

Thanks to T. Borges, University of Algarve, who contributed to the initial discussions of octopus growth and the structure of this review at the Cephalopod Growth Workshop in Thailand, February 2003. The Ian Potter Foundation and The Tasmanian Aquaculture and Fisheries Institute, University of Tasmania provided funding for JMS and GTP to attend the Workshop in Thailand. Funding to JMS to study octopus growth comes from an Australian Research Committee, Linkage grant and Postdoctoral Fellowship (C00107233). Funding to RV was provided by the Centre de Referència de Recerca i Desenvolupament en Aqüicultura, CIRIT, Generalitat de Catalunya; the Planes Nacionales JACUMAR, Ministerio de Agricultura, Pesca y Alimentación, Spain; and by the Commission of the European Communities within the framework of the EU Concerted Action CEPHSTOCK (QLRT-2001–00962).


References

Aguado Giménez, F. , and García García, B. (2002). Growth and food intake models in Octopus vulgaris Cuvier (1797): Influence of body weight, temperature, sex and diet. Aquaculture International 10, 361–377.
Crossref | GoogleScholarGoogle Scholar | Raya C. P. , and Hernández-González C. L. (1998). Growth rings within the beak mocrostructure of the octopus Octopus vulgaris, Cuvier 1797. In ‘Cephalopod Biodiversity, Ecology and Evolution’. (Eds A. I. L. Payne, M. R. Lipinski, M. R. Clarke and M. A. C. Roeleveld.) South African Journal of Marine Science 20, 135—142.

Rigby, R. , and Sakurai, Y. (in press). Temperature and feeding related growth efficiency of immature octopuses Enteroctopus dofleini.  Suisanzoshoku ,


Rodaniche, A. F. (1984). Iteroparity in the lesser Pacific striped octopus Octopus chierchiae (Jatta, 1889). Bulletin of Marine Science 35, 99–104.


Sakaguchi, H. , Hamano, T. , and Nakazono, A. (2000). Preliminary study on a statolith marking method for Octopus vulgaris using alizarin complexone. Bulletin of Japanese Society of Fisheries Oceanography 64, 155–160.


Sánchez, P. and  Obarti, R. (1993). The biology and fishery of Octopus vulgaris caught with clay pots on the Spanish Mediterranean coast. In ‘Recent Advances in Cephalopod Fisheries Biology’. (Eds. T. Okutani, R. K. O’Dor and T. Kubodera)  pp. 477–487. (Tokai University Press: Tokyo, Japan.)

Segawa, S. , and Nomoto, A. (2002). Laboratory growth, feeding, oxygen consumption and ammonia excretion of Octopus ocellatus.  Bulletin of Marine Science 71, 801–813.


Semmens, J. M. , and Moltschaniwskyj, N. A. (2000). An examination of variable growth in the loliginid squid Sepioteuthis lessoniana: a whole animal and reductionist approach. Marine Ecology Progress Series 193, 135–141.


Smale, M. J. , and Buchan, P. R. (1981). Biology of Octopus vulgaris off the east coast of South Africa. Marine Biology 65, 1–12.


Sobrino, I. and  Real, M. (2003). First approach to the quantification of age pigment lipofuscin in brains from Octopus vulgaris (Mollusca: Cephalopoda. In ‘Program for the Cephalopod International Advisory Council (CIAC) 2003 Symposium: Biology recruitment and culture, Phuket Thailand’. (Cephalopod International Advisory Council: Aberdeen, UK.) [Abstract]

Solis-Ramirez, M. (1997). Octopus maya: Biology and fishery in Mexico. In ‘Proceedings of the workshop on the fishery and market potential of octopus in California, University of Southern California, Catalina’. (Eds. M. A. Lang, F. G. Hochberg, R. A. Ambrose and J. M. Engle)  pp. 105–113. (Smithsonian Institute: Washington, DC, USA.)

Sousa Reis, C. , and Fernándes, R. (2002). Growth observations on Octopus vulgaris Cuvier, 1797 from the Portuguese waters: Growth lines in the vestigial shell as possible tools for age determination.  Bulletin of Marine Science 71, 1099–1103.


Van Heukelem, W. F. (1973). Growth and life-span of Octopus cyanea (Mollusca: Cephalopoda). Journal of Zoology (London, England: 1987) 169, 299–315.


Vila, Y. , Medina, A. , Megina, C. , Ramos, F. , and Sobrino, I. (2000). Quantification of the age-pigment lipofuscin in brain of known-age, pond-reared prawns Penaeus japonicus (Crustacea, Decapoda). The Journal of Experimental Zoology 286, 120–130.
Crossref | GoogleScholarGoogle Scholar |

Villanueva, R. (1992a). Interannual growth differences in the oceanic squid Todarodes angolensis Adam in the northern Benguela upwelling system, based on statolith growth increment analysis. Journal of Experimental Marine Biology and Ecology 159, 157–177.
Crossref | GoogleScholarGoogle Scholar |

Villanueva, R. (1992b). Continuous spawning in the cirrate octopods Opisthoteuthis agassizii and O. vossi: features of sexual maturation defining a reproductive strategy in cephalopods. Marine Biology 114, 265–275.


Villanueva, R. (1994). Decapod crab zoeae as food for rearing cephalopod paralarvae. Aquaculture (Amsterdam, Netherlands) 128, 143–152.
Crossref | GoogleScholarGoogle Scholar |

Villanueva, R. (1995). Experimental rearing and growth of planktonic Octopus vulgaris from hatching to settlement. Canadian Journal of Fisheries and Aquatic Sciences 52, 2639–2650.


Villanueva, R. , Koueta, N. , Riba, J. , and Boucaud-Camou, E. (2002). Growth and proteolytic activity of Octopus vulgaris paralarvae with different food rations during first-feeding, using Artemia nauplii and compound diets. Aquaculture (Amsterdam, Netherlands) 205, 269–286.
Crossref | GoogleScholarGoogle Scholar |

Voss, G. L. (1988). Evolution and phylogenetic relationships of the deep-sea octopods (cirrata and incirrata. I In ‘The Mollusca Vol 12: Paleontology and Neontology of Cephalopods’. (Eds. M. R. Clarke and E. R. Trueman)  pp. 253–276. (Academic Press: San Diego, CA, USA.)

Weatherley, A. H. (1990). Approaches to understanding fish growth. Transactions of the American Fisheries Society 119, 662–672.


Weatherley, A. H. and  Gill, H. S. (1987). Chapter 5: Tissues and growth. In ‘The Biology of Fish Growth’.  pp. 147–175. (Academic Press: London, UK.)

Wolff, M. and  Perez, H. (1992). Population dynamics, food consumption and gross conversion efficiency of Octopus mimus Gould, from Antofagasta (northern Chile). In ‘ICES Council meeting papers’.  pp. 12. (ICES: Copenhagen, Denmark.)

Wood, J. B. (2000). The Natural History of Bathypolypus arcticus (Prosch), a Deep-Sea Octopus. PhD Thesis. (Dalhousie University: Toronto, Canada.)

Wood, J. B. , and O’Dor, R. K. (2000). Do larger cephalopods live longer? Effects of temperature and phylogeny on interspecific comparisons of age and size at maturity. Marine Biology 136, 91–99.
Crossref | GoogleScholarGoogle Scholar |

Young, J. Z. (1960). The statocyst of Octopus vulgaris. Proceedings of the Royal Society of London. Series B. Biological Sciences 152, 3–29.