HIV-specific ADCC: preventive and therapeutic vaccine potential
Ivan StratovDepartment of Microbiology and Immunology
Grattan Street, Parkville
Vic. 3010, Australia
Tel: +61 3 8344 9938
Fax: +61 3 8344 3846
Email: stratovi@unimelb.edu.au
Microbiology Australia 35(2) 105-106 https://doi.org/10.1071/MA14034
Published: 15 May 2014
Abstract
HIV vaccines based on neutralising antibody and CD8 cytotoxic T-cell immunity have failed to induce protection in phase III clinical trials, while live attenuated HIV vaccines (although effective in simian models) are considered too dangerous to use in humans due to reversion to virulence. New strategies and lateral thinking are required to develop a safe and effective vaccine against HIV. Antibody dependent cellular cytotoxicity (ADCC) represents one such modality that provides potential advantages over previous modalities and may also have a role in efforts to cure HIV infection.
References
[1] WHO (2014) When you have hope. http://www.who.int/hiv/en/[2] Cohen, M.S. et al. (2011) Prevention of HIV-1 infection with early antiretroviral therapy. N. Engl. J. Med. 365, 493–505.
| Prevention of HIV-1 infection with early antiretroviral therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVars7jF&md5=f9b5762c300641977a5b0acaf07eb30fCAS | 21767103PubMed |
[3] Rerks-Ngarm, S. et al. (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209–2220.
| Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWhsb%2FO&md5=975d5fe43a25c7b782c45db3b6e74b5cCAS | 19843557PubMed |
[4] Buchbinder, S.P. et al. (2008) Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372, 1881–1893.
| Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVelurfM&md5=77a1d1972d9600669aca3efabe3e53e9CAS | 19012954PubMed |
[5] Gilbert, P.B. et al. (2005) Correlation between immunologic responses to a recombinant glycoprotein 120 vaccine and incidence of HIV-1 infection in a phase 3 HIV-1 preventive vaccine trial. J. Infect. Dis. 191, 666–677.
| Correlation between immunologic responses to a recombinant glycoprotein 120 vaccine and incidence of HIV-1 infection in a phase 3 HIV-1 preventive vaccine trial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVensbk%3D&md5=bcd49af781ec1100e2da7306c252ef8fCAS | 15688279PubMed |
[6] Hammer, S.M. et al. (2013) Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N. Engl. J. Med. 369, 2083–2092.
| Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWqtr%2FF&md5=0e5837eb70df2d13806d937e3686688fCAS | 24099601PubMed |
[7] Haynes, B.F. et al. (2012) Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N. Engl. J. Med. 366, 1275–1286.
| Immune-correlates analysis of an HIV-1 vaccine efficacy trial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsVSmtL4%3D&md5=598d205801bf3ee99c1d7d68f2fbef4bCAS | 22475592PubMed |
[8] Roederer, M. et al. (2014) Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV. Nature 505, 502–508.
| Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOgurk%3D&md5=fc9f6f3e04530cd9267162ecf708161fCAS | 24352234PubMed |
[9] McElrath, M.J. et al. (2008) HIV-1 vaccine-induced immunity in the test-of-concept step study: a case-cohort analysis. Lancet 372, 1894–1905.
| HIV-1 vaccine-induced immunity in the test-of-concept step study: a case-cohort analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVelurfN&md5=f59f08f579e254e93273e21a5c2c6d70CAS | 19012957PubMed |
[10] Payne, R.P. et al. (2014) Differential escape patterns within the dominant HLA-B*57:03-restricted HIV Gag epitope reflect distinct clade-specific functional constraints. J. Virol. , .
| Differential escape patterns within the dominant HLA-B*57:03-restricted HIV Gag epitope reflect distinct clade-specific functional constraints.Crossref | GoogleScholarGoogle Scholar | 24501417PubMed |
[11] Stratov, I. et al. (2008) Robust NK cell-mediated human immunodeficiency virus (HIV)-specific antibody-dependent responses in HIV-infected subjects. J. Virol. 82, 5450–5459.
| Robust NK cell-mediated human immunodeficiency virus (HIV)-specific antibody-dependent responses in HIV-infected subjects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1Sls7Y%3D&md5=58e696faa7d9ffff7c7518b790752c7eCAS | 18353957PubMed |
[12] Isitman, G. et al. (2011) Pol as a target for antibody dependent cellular cytotoxicity responses in HIV-1 infection. Virology 412, 110–116.
| Pol as a target for antibody dependent cellular cytotoxicity responses in HIV-1 infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFertbg%3D&md5=64c90ba7b6542dd8ad62f26c9bdd35ceCAS | 21269655PubMed |
[13] Wren, L.H. et al. (2013) Specific antibody-dependent cellular cytotoxicity responses associated with slow progression of HIV infection. Immunology 138, 116–123.
| Specific antibody-dependent cellular cytotoxicity responses associated with slow progression of HIV infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnslSrsw%3D%3D&md5=b0141de38e382245267b00dec5def7c2CAS | 23173935PubMed |
[14] Chung, A.W. et al. (2011) Immune escape from HIV-specific antibody-dependent cellular cytotoxicity (ADCC) pressure. Proc. Natl. Acad. Sci. USA 108, 7505–7510.
| Immune escape from HIV-specific antibody-dependent cellular cytotoxicity (ADCC) pressure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFSrsb0%3D&md5=5236d1767471ac4f48a1c98ea6aa2812CAS | 21502492PubMed |
[15] Bonsignori, M. et al. (2012) Antibody-dependent cellular cytotoxicity-mediating antibodies from an HIV-1 vaccine efficacy trial target multiple epitopes and preferentially use the VH1 gene family. J. Virol. 86, 11521–11532.
| Antibody-dependent cellular cytotoxicity-mediating antibodies from an HIV-1 vaccine efficacy trial target multiple epitopes and preferentially use the VH1 gene family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCmur7E&md5=1f5b55e8f734aadf3096332f2781b1d1CAS | 22896626PubMed |
[16] Wren, L.H. et al. (2013) Obstacles to ideal anti-HIV antibody-dependent cellular cytotoxicity responses. Vaccine 31, 5506–5517.
| Obstacles to ideal anti-HIV antibody-dependent cellular cytotoxicity responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVSns7bE&md5=ba3aa4587a6e89dab14930b30439ead7CAS | 23981432PubMed |
[17] Archin, N.M. and Margolis, D.M. (2014) Emerging strategies to deplete the HIV reservoir. Curr. Opin. Infect. Dis. 27, 29–35.
| Emerging strategies to deplete the HIV reservoir.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVSqtLnN&md5=a6b3202cbcbc7da919d50fdbe75e6dcdCAS | 24296585PubMed |
[18] Casazza, J.P. et al. (2013) Therapeutic vaccination expands and improves the function of the HIV-specific memory T-cell repertoire. J. Infect. Dis. 207, 1829–1840.
| Therapeutic vaccination expands and improves the function of the HIV-specific memory T-cell repertoire.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotlOgur4%3D&md5=7c85931e21b5a0d63652a6cfd9d2e4e6CAS | 23482645PubMed |