Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Epstein–Barr virus-associated malignancies: pathobiology and emerging therapeutic options

Corey Smith and Rajiv Khanna
+ Author Affiliations
- Author Affiliations

Centre for Immunotherapy and Vaccine Development
Queensland Institute of Medical Research
Tumour Immunology Laboratory
Department of Immunology
300 Herston Road, Brisbane
Qld 4006, Australia
Tel: +61 7 3362 0385
Fax: +61 7 3845 3510
Email: rajiv.khanna@qimr.edu.au

Microbiology Australia 34(3) 120-124 https://doi.org/10.1071/MA13041
Published: 4 September 2013

Abstract

Epstein–Barr virus (EBV) was first identified in malignant Burkitt lymphoma cells in 1964. Since then, EBV has been associated with a number of other malignancies of either lymphocytic origin, including both B cell and NK/T cell cancers, or epithelial origin, predominantly nasopharyngeal and gastric cancers. While a complete understanding of the relationship between EBV-mediated cellular transformation and the oncogenic events that lead to uncontrolled malignant cell growth remains to be determined for a number of these cancers, it is clear in all of these settings that a breakdown in the immune surveillance of virally infected cells contributes to the survival of EBV-bearing malignant cells.


References

[1]  Rickinson, A.B. et al. (1996) Epstein–Barr virus. In Fields Virology (Vol. 3), pp. 2397–2446, Philadelphia, Lippincott–Raven Publishers.

[2]  Rickinson, A.B. and Moss, D.J. (1997) Human cytotoxic T lymphocyte responses to Epstein–Barr virus infection. Annu. Rev. Immunol. 15, 405–431.
Human cytotoxic T lymphocyte responses to Epstein–Barr virus infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisVCmtrc%3D&md5=89a536220f6497d4fe5f6a407a96a2b1CAS | 9143694PubMed |

[3]  Thorley-Lawson, D.A. (2001) Epstein–Barr virus: exploiting the immune system. Nat. Rev. Immunol. 1, 75–82.
Epstein–Barr virus: exploiting the immune system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvF2qtb8%3D&md5=0ee4637828a32562ad99bf4b7d42dc87CAS | 11905817PubMed |

[4]  Moss, P. and Rickinson, A. (2005) Cellular immunotherapy for viral infection after HSC transplantation. Nat. Rev. Immunol. 5, 9–20.
Cellular immunotherapy for viral infection after HSC transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvVOg&md5=876ed1005ac42986a8c584dbb7d44ecbCAS | 15630425PubMed |

[5]  Rickinson, A.B. (1992) Introduction: viruses and human cancer. Semin. Cancer Biol. 3, 249–251.
| 1:STN:280:DyaK3s7itVGisA%3D%3D&md5=57a2c3fe2512ba63106bfaa41fb186daCAS | 1477330PubMed |

[6]  Kieff, E. et al. (1996) Epstein–Barr virus and its replication. In Virology (Vol. 3), pp. 2343–2396, Philadelphia, Raven Press.

[7]  Bollard, C.M. et al. (2012) T-cell therapy in the treatment of post-transplant lymphoproliferative disease. Nat. Rev. Clin. Oncol. 9, 510–519.
T-cell therapy in the treatment of post-transplant lymphoproliferative disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Kjs7zP&md5=f53de565415f6789d7d746d20cc8b07cCAS | 22801669PubMed |

[8]  Young, L. et al. (1989) Expression of Epstein–Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N. Engl. J. Med. 321, 1080–1085.
Expression of Epstein–Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c%2FhsV2rug%3D%3D&md5=6886e917c7ee95b6b1f1d786cb421e72CAS | 2552313PubMed |

[9]  Razonable, R.R. and Paya, C.V. (2003) Herpesvirus infections in transplant recipients: current challenges in the clinical management of cytomegalovirus and Epstein–Barr virus infections. Herpes 10, 60–65.
| 14759337PubMed |

[10]  Khanna, R. et al. (2001) Immunotherapeutic strategies for EBV-associated malignancies. Trends. Mol. Med. 7, 270–276.
Immunotherapeutic strategies for EBV-associated malignancies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVahu7c%3D&md5=f14d2c857968899cd7db7eb3f2ff29b8CAS | 11378517PubMed |

[11]  Kuehnle, I. et al. (2000) CD20 monoclonal antibody (rituximab) for therapy of Epstein–Barr virus lymphoma after hemopoietic stem-cell transplantation. Blood 95, 1502–1505.
| 1:CAS:528:DC%2BD3cXhtFKitbc%3D&md5=b0b2d3a507c04f5420541aa70f9fbeb2CAS | 10666232PubMed |

[12]  Rooney, C.M. et al. (1995) Use of gene-modified virus-specific T lymphocytes to control Epstein–Barr-virus-related lymphoproliferation. Lancet 345, 9–13.
Use of gene-modified virus-specific T lymphocytes to control Epstein–Barr-virus-related lymphoproliferation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FpslOgsA%3D%3D&md5=700cbb8a0a6995f8e3357607a82377a4CAS | 7799740PubMed |

[13]  Rooney, C.M. et al. (1998) Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92, 1549–1555.
| 1:CAS:528:DyaK1cXls1Siu7w%3D&md5=ad77222e0572e741b38f7bfd403fa636CAS | 9716582PubMed |

[14]  Heslop, H.E. et al . (2010) Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 115, 925–935.
Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFOitr0%3D&md5=700eca907b91dd49d9c55e4348049daaCAS | 19880495PubMed |

[15]  Khanna, R. et al. (1999) Activation and adoptive transfer of Epstein–Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc. Natl Acad. Sci. USA 96, 10391–10396.
Activation and adoptive transfer of Epstein–Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvFentL8%3D&md5=eb708ad3ef95545a0225e0f72b5aa5cfCAS | 10468618PubMed |

[16]  Haque, T. et al. (2001) Complete regression of posttransplant lymphoproliferative disease using partially HLA-matched Epstein Barr virus-specific cytotoxic T cells. Transplantation 72, 1399–1402.
Complete regression of posttransplant lymphoproliferative disease using partially HLA-matched Epstein Barr virus-specific cytotoxic T cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MnhtV2ntw%3D%3D&md5=efaac24c150f4820f1d4b1938d5009a0CAS | 11685111PubMed |

[17]  Haque, T. et al. (2007) Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood 110, 1123–1131.
Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptFKmu78%3D&md5=ad1949940f8b84cea2ffa9d818b57679CAS | 17468341PubMed |

[18]  Haque, T. et al. (2002) Treatment of Epstein–Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet 360, 436–442.
Treatment of Epstein–Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells.Crossref | GoogleScholarGoogle Scholar | 12241714PubMed |

[19]  Leen, A.M. et al. (2013) Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood 121, 5113–5123.
Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSnt7fM&md5=d22b9634b7f385bfb8b45bc3f4429739CAS | 23610374PubMed |

[20]  Bollard, C.M. et al. (2008) Immunotherapy targeting EBV-expressing lymphoproliferative diseases. Best Pract. Res. Clin. Haematol. 21, 405–420.
Immunotherapy targeting EBV-expressing lymphoproliferative diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFanurzP&md5=77633262283fa820cd8fb9ef5906ebbdCAS | 18790446PubMed |

[21]  Gandhi, M.K. et al. (2004) Epstein–Barr virus‐associated Hodgkin’s lymphoma. Br. J. Haematol. 125, 267–281.
Epstein–Barr virus‐associated Hodgkin’s lymphoma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvFChsLo%3D&md5=8d53383a68d5b7f57427e69cd4d473e4CAS | 15086409PubMed |

[22]  Ahmed, N. and Heslop, H.E. (2006) Viral lymphomagenesis. Curr. Opin. Hematol. 13, 254–259.
Viral lymphomagenesis.Crossref | GoogleScholarGoogle Scholar | 16755222PubMed |

[23]  Koduru, P.R.K. et al. (1993) Phenotypic and genotypic characterization of Hodgkins disease. Am. J. Hematol. 44, 117–124.
Phenotypic and genotypic characterization of Hodgkins disease.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c%2FptFarsg%3D%3D&md5=445d45a11e3cf733edc0742df51db5b7CAS |

[24]  Gandhi, M.K. et al. (2007) Galectin-1 mediated suppression of Epstein–Barr virus-specific T-cell immunity in classic Hodgkin lymphoma. Blood 110, 1326–1329.
Galectin-1 mediated suppression of Epstein–Barr virus-specific T-cell immunity in classic Hodgkin lymphoma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptFKls7g%3D&md5=ee887f366367d7857e7bb8ec5018c769CAS | 17438085PubMed |

[25]  Gandhi, M.K. et al. (2006) Expression of LAG-3 by tumor-infiltrating lymphocytes is coincident with the suppression of latent membrane antigen-specific CD8+ T-cell function in Hodgkin lymphoma patients. Blood 108, 2280–2289.
Expression of LAG-3 by tumor-infiltrating lymphocytes is coincident with the suppression of latent membrane antigen-specific CD8+ T-cell function in Hodgkin lymphoma patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCgur7F&md5=dac7354c5a937ac4dc0efaf41dba2f4fCAS | 16757686PubMed |

[26]  Smith, C. et al. (2009) Acquisition of polyfunctionality by Epstein–Barr virus-specific CD8+ T cells correlates with increased resistance to galectin-1-mediated suppression. J. Virol. 83, 6192–6198.
Acquisition of polyfunctionality by Epstein–Barr virus-specific CD8+ T cells correlates with increased resistance to galectin-1-mediated suppression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFWqur4%3D&md5=bdb9a6c1bdc0d3ea4db679a6736d2e96CAS | 19357166PubMed |

[27]  Poppema, S. and van den Berg, A. (2000) Interaction between host T cells and Reed–Sternberg cells in Hodgkin lymphomas. Semin. Cancer Biol. 10, 345–350.
Interaction between host T cells and Reed–Sternberg cells in Hodgkin lymphomas.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7js1ejtQ%3D%3D&md5=a9e653e338cd698271075a8a49ae29b0CAS | 11100882PubMed |

[28]  Rosdahl, N. et al. (1974) Hodgkin’s disease in patients with previous infectious mononucleosis: 30 years’ experience. BMJ 2, 253–256.
Hodgkin’s disease in patients with previous infectious mononucleosis: 30 years’ experience.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c7mtVWktQ%3D%3D&md5=284a31f4e351216f071d9f6235c59ec6CAS | 4406463PubMed |

[29]  Kanakry, J.A. and Ambinder, R.F. (2013) EBV-related lymphomas: new approaches to treatment. Curr. Treat. Options Oncol. 14, 224–236.
EBV-related lymphomas: new approaches to treatment.Crossref | GoogleScholarGoogle Scholar | 23549980PubMed |

[30]  Kelly, K.M. et al. (2011) BEACOPP chemotherapy is a highly effective regimen in children and adolescents with high-risk Hodgkin lymphoma: a report from the Children’s Oncology Group. Blood 117, 2596–2603.
BEACOPP chemotherapy is a highly effective regimen in children and adolescents with high-risk Hodgkin lymphoma: a report from the Children’s Oncology Group.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVWguro%3D&md5=8fc06af55ed51dce9bdc88323206d781CAS | 21079154PubMed |

[31]  Gottschalk, S. et al. (2006) T cell therapies. Ernst Schering Found Symp Proc. , 69–82.
| 1:STN:280:DC%2BD2srislKktA%3D%3D&md5=a3cfb0c04bfc5f1100e55aeb7a8fbe67CAS | 17824182PubMed |

[32]  Bollard, C.M. et al. (2006) Administration of latent membrane protein 2-specific cytotoxic T lymphocytes to patients with relapsed Epstein–Barr virus-positive lymphoma. Clin. Lymphoma Myeloma 6, 342–347.
Administration of latent membrane protein 2-specific cytotoxic T lymphocytes to patients with relapsed Epstein–Barr virus-positive lymphoma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFWktbc%3D&md5=5a27089829a7b3bc9ebc62869cc1efeeCAS | 16507214PubMed |

[33]  Gottschalk, S. et al. (2005) Adoptive immunotherapy for EBV-associated malignancies. Leuk. Lymphoma 46, 1–10.
Adoptive immunotherapy for EBV-associated malignancies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFSntr3J&md5=b224fd899268216268dde48a5947e402CAS | 15621775PubMed |

[34]  Bollard, C.M. et al. (2004) The generation and characterization of LMP2-specific CTLs for use as adoptive transfer from patients with relapsed EBV-positive Hodgkin disease. J. Immunother. 27, 317–327.
The generation and characterization of LMP2-specific CTLs for use as adoptive transfer from patients with relapsed EBV-positive Hodgkin disease.Crossref | GoogleScholarGoogle Scholar | 15235393PubMed |

[35]  Bollard, C.M. et al. (2004) Cytotoxic T lymphocyte therapy for Epstein–Barr virus+ Hodgkin’s disease. J. Exp. Med. 200, 1623–1633.
Cytotoxic T lymphocyte therapy for Epstein–Barr virus+ Hodgkin’s disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFGmurbI&md5=32f7f7903ad5424c42a641481533a6e6CAS | 15611290PubMed |

[36]  Straathof, K.C. et al. (2003) Immunotherapy for Epstein–Barr virus-associated cancers in children. Oncologist 8, 83–98.
Immunotherapy for Epstein–Barr virus-associated cancers in children.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvVyqtr0%3D&md5=1e00b7370485ffb839c5df675c1a8e36CAS | 12604735PubMed |

[37]  Smith, C. et al. (2006) Functional reversion of antigen-specific CD8+ T cells from patients with Hodgkin lymphoma following in vitro stimulation with recombinant polyepitope. J. Immunol. 177, 4897–4906.
| 1:CAS:528:DC%2BD28Xps1GnsLk%3D&md5=f8c327b8ded39d6142eaf06f93ae61e8CAS | 16982932PubMed |

[38]  Heslop, H.E. (2005) Biology and treatment of Epstein–Barr virus-associated non-Hodgkin lymphomas. Hematology (Am Soc Hematol Educ Program) , 260–266.
Biology and treatment of Epstein–Barr virus-associated non-Hodgkin lymphomas.Crossref | GoogleScholarGoogle Scholar | 16304390PubMed |

[39]  Njie, R. et al. (2009) The effects of acute malaria on Epstein–Barr virus (EBV) load and EBV-specific T cell immunity in Gambian children. J. Infect. Dis. 199, 31–38.
The effects of acute malaria on Epstein–Barr virus (EBV) load and EBV-specific T cell immunity in Gambian children.Crossref | GoogleScholarGoogle Scholar | 19032105PubMed |

[40]  Chattopadhyay, P.K. et al. (2013) Holoendemic malaria exposure is associated with altered Epstein–Barr virus-specific CD8(+) T-cell differentiation. J. Virol. 87, 1779–1788.
Holoendemic malaria exposure is associated with altered Epstein–Barr virus-specific CD8(+) T-cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltV2itL0%3D&md5=ad3db2d2841e0bfb60896be1622ac8e1CAS | 23175378PubMed |

[41]  Münz, C. et al. (2000) Human CD4(+) T lymphocytes consistently respond to the latent Epstein–Barr virus nuclear antigen EBNA1. J. Exp. Med. 191, 1649–1660.
Human CD4(+) T lymphocytes consistently respond to the latent Epstein–Barr virus nuclear antigen EBNA1.Crossref | GoogleScholarGoogle Scholar | 10811859PubMed |

[42]  Khanna, R. and Burrows, S.R. (2000) Role of cytotoxic T lymphocytes in Epstein–Barr virus-associated diseases. Annu. Rev. Microbiol. 54, 19–48.
Role of cytotoxic T lymphocytes in Epstein–Barr virus-associated diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFWrsrc%3D&md5=6eb6c377f365217cf00e30da6e92b27cCAS | 11018123PubMed |

[43]  Moss, D.J. et al. (1999) Developing immunotherapeutic strategies for the control of Epstein–Barr virus-associated malignancies. J. Acquir. Immune. Defic. Syndr. 21, S80–S83.
| 1:CAS:528:DC%2BD3cXjtlKktbk%3D&md5=61a47019a3807bfb3224591ce0484663CAS | 10430223PubMed |

[44]  Haluska, F.G. et al. (1986) The t(8; 14) chromosomal translocation occurring in B-cell malignancies results from mistakes in V-D-J joining. Nature 324, 158–161.
The t(8; 14) chromosomal translocation occurring in B-cell malignancies results from mistakes in V-D-J joining.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXivVCjtg%3D%3D&md5=abf3905aeb5b991479eaefc3b36a6652CAS | 3097550PubMed |

[45]  Razak, A.R. et al. (2010) Nasopharyngeal carcinoma: the next challenges. Eur. J. Cancer 46, 1967–1978.
Nasopharyngeal carcinoma: the next challenges.Crossref | GoogleScholarGoogle Scholar | 20451372PubMed |

[46]  Cho, W.C. (2007) Nasopharyngeal carcinoma: molecular biomarker discovery and progress. Mol. Cancer 6, 1.
Nasopharyngeal carcinoma: molecular biomarker discovery and progress.Crossref | GoogleScholarGoogle Scholar | 17199893PubMed |

[47]  Chan, A.T. et al. (2002) Nasopharyngeal carcinoma. Ann. Oncol. 13, 1007–1015.
Nasopharyngeal carcinoma.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38vitFWgtg%3D%3D&md5=8c528d87fc489cf1c787f1d8786406eaCAS | 12176778PubMed |

[48]  Raab-Traub, N. (2002) Epstein–Barr virus in the pathogenesis of NPC. Semin.Cancer Biol. 12, 431–441.
Epstein–Barr virus in the pathogenesis of NPC.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xosl2gu7o%3D&md5=26786e326927f07b6442c3f76ec3e6aeCAS | 12450729PubMed |

[49]  Bensouda, Y. et al. (2011) Treatment for metastatic nasopharyngeal carcinoma. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 128, 79–85.
Treatment for metastatic nasopharyngeal carcinoma.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3Mvls1eruw%3D%3D&md5=a68031c3795ee1d6d90e2a0ef02b9291CAS | 21177151PubMed |

[50]  Smith, C. et al. (2012) Effective treatment of metastatic forms of Epstein–Barr virus-associated nasopharyngeal carcinoma with a novel adenovirus-based adoptive immunotherapy. Cancer Res. 72, 1116–1125.
Effective treatment of metastatic forms of Epstein–Barr virus-associated nasopharyngeal carcinoma with a novel adenovirus-based adoptive immunotherapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Wisrw%3D&md5=026d538092744dbfb38b82bdf333beabCAS | 22282657PubMed |

[51]  Tse, E. and Kwong, Y.L. (2013) How I treat NK/T-cell lymphomas. Blood 121, 4997–5005.
How I treat NK/T-cell lymphomas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVartL%2FF&md5=0eeb3c9aee3fb4037aece653b2503aedCAS | 23652805PubMed |

[52]  Bugalia, A. et al. (2013) Immunomorphologic profile and Epstein–Barr virus status of a cohort of 35 cases of extranodal natural killer/T-cell lymphoma, nasal type of upper aerodigestive tract from a tertiary care center in South India. Leuk. Lymphoma 54, 1201–1207.
Immunomorphologic profile and Epstein–Barr virus status of a cohort of 35 cases of extranodal natural killer/T-cell lymphoma, nasal type of upper aerodigestive tract from a tertiary care center in South India.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXns1ahu78%3D&md5=0c9964b85d27f3216a6fe057bb4c711eCAS | 23098105PubMed |

[53]  Hildesheim, A. (2013) Invited commentary: Epstein–Barr virus-based screening for the early detection of nasopharyngeal carcinoma: a new frontier. Am. J. Epidemiol. 177, 251–253.
Invited commentary: Epstein–Barr virus-based screening for the early detection of nasopharyngeal carcinoma: a new frontier.Crossref | GoogleScholarGoogle Scholar | 23255781PubMed |

[54]  Lee, J.H. et al. (2009) Clinicopathological and molecular characteristics of Epstein–Barr virus-associated gastric carcinoma: a meta-analysis. J. Gastroenterol. Hepatol. 24, 354–365.
Clinicopathological and molecular characteristics of Epstein–Barr virus-associated gastric carcinoma: a meta-analysis.Crossref | GoogleScholarGoogle Scholar | 19335785PubMed |

[55]  Shah, K.M. and Young, L.S. (2009) Epstein–Barr virus and carcinogenesis: beyond Burkitt’s lymphoma. Clin. Microbiol. Infect. 15, 982–988.
Epstein–Barr virus and carcinogenesis: beyond Burkitt’s lymphoma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFChtbrM&md5=390a84bf0368e2ccb5837865273a0d28CAS | 19874382PubMed |

[56]  Trimeche, M. et al. (2009) Prevalence and characteristics of Epstein–Barr virus-associated gastric carcinomas in Tunisia. Eur. J. Gastroenterol. Hepatol. 21, 1001–1007.
Prevalence and characteristics of Epstein–Barr virus-associated gastric carcinomas in Tunisia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Cjur4%3D&md5=f050f013863d11672245665a4513c996CAS | 19491698PubMed |

[57]  Kim, D.N. et al. (2013) Characterization of naturally Epstein–Barr virus-infected gastric carcinoma cell line YCCEL1. J. Gen. Virol. 94, 497–506.
Characterization of naturally Epstein–Barr virus-infected gastric carcinoma cell line YCCEL1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVyqsrk%3D&md5=1308d13ef04b9ccaeed590ae2047d907CAS |

[58]  Wang, Y. et al. (2010) Variations of Epstein–Barr virus nuclear antigen 1 gene in gastric carcinomas and nasopharyngeal carcinomas from Northern China. Virus Res. 147, 258–264.
Variations of Epstein–Barr virus nuclear antigen 1 gene in gastric carcinomas and nasopharyngeal carcinomas from Northern China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1Wi&md5=be23ad8c58894ed3e67b0c923fce4b02CAS | 19941915PubMed |

[59]  Saito, M. et al. (2013) Role of DNA methylation in the development of Epstein–Barr virus-associated gastric carcinoma. J. Med. Virol. 85, 121–127.
Role of DNA methylation in the development of Epstein–Barr virus-associated gastric carcinoma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Kms73O&md5=3e497020045eacee5301a75fa1e056a5CAS | 23073987PubMed |