Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Phylogeny and divergence estimates for the gasteruptiid wasps (Hymenoptera : Evanioidea) reveals a correlation with hosts

Ben A. Parslow https://orcid.org/0000-0003-2339-6012 A B E , John T. Jennings https://orcid.org/0000-0003-3031-6316 C , Michael P. Schwarz https://orcid.org/0000-0001-7212-6655 A and Mark I. Stevens https://orcid.org/0000-0003-1505-1639 B D
+ Author Affiliations
- Author Affiliations

A Biological Sciences, College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia.

B South Australian Museum, North Terrace, GPO Box 234, Adelaide, SA 5000, Australia.

C Centre for Evolutionary Biology and Biodiversity, and School of Biological Sciences, The University of Adelaide, SA 5005, Australia.

D School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia.

E Corresponding author. Email: ben.parslow3@gmail.com

Invertebrate Systematics 34(3) 319-327 https://doi.org/10.1071/IS19060
Submitted: 11 October 2019  Accepted: 22 February 2020   Published: 24 April 2020

Abstract

The Gasteruptiidae are an easily recognised family of wasps whose larvae are considered predator-inquilines in the nests of solitary bees and wasps. There has been minimal molecular research on the family and as a result little understanding of the evolutionary relationships within the group. We present the first molecular phylogeny focused on Gasteruptiidae, generated using three molecular fragments (mitochondrial C01 and nuclear markers EF1-α and 28s) and estimate the divergence times of Evanioidea based on three secondary calibration points. The analyses included 142 specimens of Gasteruptiidae and 5 outgroup taxa from Aulacidae and Evaniidae. The monophyly of the Gasteruptiidae and its subfamilies Gasteruptiinae (Gasteruption) and Hyptiogastrinae (Hyptiogaster and Pseudofoenus) are confirmed. Our results indicate that Evanioidea diverged during the late Jurassic at 151.3 (171.99–136.15) Ma with Evaniidae during the early Cretaceous at 137.33 (140.86–133.67) Ma, and Gasteruptiidae during the Palaeocene at 60.23 (83.78–40.02) Ma. The crown age of Hyptiogastrinae was estimated to be during the mid-Eocene 40.72 (60.9–22.57) Ma and for Gasteruption during the early Eocene at 47.46 (64.7–31.75) Ma, which corresponded to their host divergence ages. We anticipate that more extensive taxon sampling combined with the use of phylogenomic data will help resolve low support within the Gasteruption clade.

Additional keywords: 28s, Aulacidae, CO1, EF1-α, Evaniidae, Gasteruptiidae, Gasteruption, Hyptiogaster, Pseudofoenus.


References

Aguiar, A. P., Deans, A. R., Engel, M. S., Forshage, M., Huber, J. T., Jennings, J. T., Johnson, N. F., Lelej, A. S., Longino, J. T., Lohrmann, V., Mik, I., Ohl, M., Rasmussen, C., Taeger, A., and Yu, D. S. K. (2013). Order Hymenoptera. Zootaxa 3703, 51–62.
Order Hymenoptera.Crossref | GoogleScholarGoogle Scholar |

Almeida, E. A., Pie, M. R., Brady, S. G., and Danforth, B. N. (2012). Biogeography and diversification of colletid bees (Hymenoptera: Colletidae): emerging patterns from the southern end of the world. Journal of Biogeography 39, 526–544.
Biogeography and diversification of colletid bees (Hymenoptera: Colletidae): emerging patterns from the southern end of the world.Crossref | GoogleScholarGoogle Scholar |

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403–410.
Basic local alignment search tool.Crossref | GoogleScholarGoogle Scholar | 2231712PubMed |

Baltazar, C. R. (1966). A catalogue of Philippine Hymenoptera. Pacific Insects Monograph 8, 1–488.

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., and Pevzner, P. A. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19, 455–477.
SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.Crossref | GoogleScholarGoogle Scholar | 22506599PubMed |

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.
Trimmomatic: a flexible trimmer for Illumina sequence data.Crossref | GoogleScholarGoogle Scholar | 24695404PubMed |

Carpenter, J. M. (1999). Towards simultaneous analysis of morphological and molecular data in Hymenoptera. Zoologica Scripta 28, 251–260.
Towards simultaneous analysis of morphological and molecular data in Hymenoptera.Crossref | GoogleScholarGoogle Scholar |

Crosskey, R. W. (1962). The classification of the Gasteruptiidae (Hymenoptera). Transactions of the Royal Entomological Society of London 114, 377–402.
The classification of the Gasteruptiidae (Hymenoptera).Crossref | GoogleScholarGoogle Scholar |

Deans, A. R., Gillespie, J. J., and Yoder, M. J. (2006). An evaluation of ensign wasp classification (Hymenoptera: Evaniidae) based on molecular data and insights from ribosomal RNA secondary structure. Systematic Entomology 31, 517–528.
An evaluation of ensign wasp classification (Hymenoptera: Evaniidae) based on molecular data and insights from ribosomal RNA secondary structure.Crossref | GoogleScholarGoogle Scholar |

Dowton, M., and Austin, A. D. (2001). Simultaneous analysis of 16S, 28S, COI and morphology in the Hymenoptera: Apocrita – evolutionary transitions among parasitic wasps. Biological Journal of the Linnean Society. Linnean Society of London 74, 87–111.

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 22367748PubMed |

Engel, M. (2006). Two ensign wasps in Cretaceous amber from New Jersey and Myanmar (Hymenoptera: Evaniidae). Polskie Pismo Entomologiczne 75, 443–454.

Faircloth, B. C. (2016). PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32, 786–788.
PHYLUCE is a software package for the analysis of conserved genomic loci.Crossref | GoogleScholarGoogle Scholar | 26530724PubMed |

Gernhard, T. (2008). The conditioned reconstructed process. Journal of Theoretical Biology 253, 769–778.
The conditioned reconstructed process.Crossref | GoogleScholarGoogle Scholar | 18538793PubMed |

Gonzalez, V. H., Gustafson, G. T., and Engel, M. S. (2019). Morphological phylogeny of Megachilini and the evolution of leaf-cutter behavior in bees (Hymenoptera: Megachilidae). Journal of Melittology 85, 1–123.
Morphological phylogeny of Megachilini and the evolution of leaf-cutter behavior in bees (Hymenoptera: Megachilidae).Crossref | GoogleScholarGoogle Scholar |

Grieve, A. C., Barnden, B. L., Howell, R. M., Kanishka, A. M., Stevens, M. I., Schwarz, M. P., and Parslow, B. A. (2018). Reproductive ethology of the Fijian predator-inquiline wasp Pseudofoenus extraneus (Hymenoptera: Gasteruptiidae: Hyptiogastrinae). Transactions of the Royal Society of South Australia 142, 122–129.
Reproductive ethology of the Fijian predator-inquiline wasp Pseudofoenus extraneus (Hymenoptera: Gasteruptiidae: Hyptiogastrinae).Crossref | GoogleScholarGoogle Scholar |

Heraty, J., Ronquist, F., Carpenter, J. M., Hawks, D., Schulmeister, S., Dowling, A. P., Murray, D., Munro, J., Wheeler, W. C., and Schiff, N. (2011). Evolution of the hymenopteran megaradiation. Molecular Phylogenetics and Evolution 60, 73–88.
Evolution of the hymenopteran megaradiation.Crossref | GoogleScholarGoogle Scholar | 21540117PubMed |

Huang, P., Carpenter, J. M., Chen, B., and Li, T. J. (2019). The first divergence time estimation of the subfamily Stenogastrinae (Hymenoptera: Vespidae) based on mitochondrial phylogenomics. International Journal of Biological Macromolecules 137, 767–773.
The first divergence time estimation of the subfamily Stenogastrinae (Hymenoptera: Vespidae) based on mitochondrial phylogenomics.Crossref | GoogleScholarGoogle Scholar | 31269414PubMed |

Jennings, J. T., and Austin, A. D. (1997). Revision of the Australian endemic genus Hyptiogaster Kieffer (Hymenoptera: Gasteruptiidae), with descriptions of seven new species. Journal of Natural History 31, 1533–1562.
Revision of the Australian endemic genus Hyptiogaster Kieffer (Hymenoptera: Gasteruptiidae), with descriptions of seven new species.Crossref | GoogleScholarGoogle Scholar |

Jennings, J. T., and Austin, A. D. (2000). Higher level phylogeny of Aulacidae and Gasteruptiidae (Hymenoptera.). In ‘The Hymenoptera: Evolution, Biodiversity and Biological Control’. (Eds M. D. Dowton and A. D. Austin). pp. 155–164. (CSIRO Publishing: Melbourne, Vic., Australia.)

Jennings, J. T., and Austin, A. D. (2002). Systematics and distribution of world hyptiogastrine wasps (Hymenoptera: Gasteruptiidae). Invertebrate Systematics 16, 735–811.
Systematics and distribution of world hyptiogastrine wasps (Hymenoptera: Gasteruptiidae).Crossref | GoogleScholarGoogle Scholar |

Jennings, J. T., and Austin, A. D. (2004). Biology and host relationships of aulacid and gasteruptiid wasps (Hymenoptera: Evanioidea): a review. In ‘Perspectives on Biosystematics and Biodiversity’. (Eds K. Rajmohana, K. Sudheer, P. Girish Kumar, and S. Santhosh.) pp. 187–215. (University of Calicut: Kerala, India.)

Jennings, J. T., and Parslow, B. (2014). Gasteruption youngi sp nov (Hymenoptera: Evanioidea: Gasteruptiidae) from South Australia; an unusual species with trichoid sensilla on the ovipositor sheaths. Zootaxa 3872, 95–100.
Gasteruption youngi sp nov (Hymenoptera: Evanioidea: Gasteruptiidae) from South Australia; an unusual species with trichoid sensilla on the ovipositor sheaths.Crossref | GoogleScholarGoogle Scholar | 25544075PubMed |

Jennings, J. T., Parslow, B. A., and Austin, A. D. (2018). Systematics of the parasitoid wasp genus Aulacus Jurine (Hymenoptera: Evanioidea: Aulacidae) from Australia. Zootaxa 4538, 1–13.
Systematics of the parasitoid wasp genus Aulacus Jurine (Hymenoptera: Evanioidea: Aulacidae) from Australia.Crossref | GoogleScholarGoogle Scholar | 30647337PubMed |

Katoh, K., Rozewicki, J., and Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20, 1160–1166.
MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization.Crossref | GoogleScholarGoogle Scholar | 28968734PubMed |

Klopfstein, S., Vilhelmsen, L., Heraty, J. M., Sharkey, M., and Ronquist, F. (2013). The hymenopteran tree of life: evidence from protein-coding genes and objectively aligned ribosomal data. PLoS One 8, e69344.
The hymenopteran tree of life: evidence from protein-coding genes and objectively aligned ribosomal data.Crossref | GoogleScholarGoogle Scholar | 23936325PubMed |

Klopfstein, S., Langille, B., Spasojevic, T., Broad, G. R., Cooper, S. J., Austin, A. D., and Niehuis, O. (2019). Hybrid capture data unravel a rapid radiation of pimpliform parasitoid wasps (Hymenoptera: Ichneumonidae: Pimpliformes). Systematic Entomology 44, 361–383.
Hybrid capture data unravel a rapid radiation of pimpliform parasitoid wasps (Hymenoptera: Ichneumonidae: Pimpliformes).Crossref | GoogleScholarGoogle Scholar |

Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 22319168PubMed |

Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., and Calcott, B. (2017). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34, 772–773.
PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 28013191PubMed |

Li, L., Rasnitsyn, A. P., Shih, C., Labandeira, C. C., Buffington, M., Li, D., and Ren, D. (2018). Phylogeny of Evanioidea (Hymenoptera, Apocrita), with descriptions of new Mesozoic species from China and Myanmar. Systematic Entomology 43, 810–842.
Phylogeny of Evanioidea (Hymenoptera, Apocrita), with descriptions of new Mesozoic species from China and Myanmar.Crossref | GoogleScholarGoogle Scholar |

Macedo, A. C. C. (2009). Generic classification for the Gasteruptiinae (Hymenoptera: Gasteruptiidae) based on a cladistic analysis, with the description of two new Neotropical genera and the revalidation of Plutofoenus Kieffer. Zootaxa 2075, 1–32.
Generic classification for the Gasteruptiinae (Hymenoptera: Gasteruptiidae) based on a cladistic analysis, with the description of two new Neotropical genera and the revalidation of Plutofoenus Kieffer.Crossref | GoogleScholarGoogle Scholar |

Parslow, B. A., and Jennings, J. T. (2018). A new species of the endemic Australian genus Hyptiogaster Kieffer (Hymenoptera: Gasteruptiidae). Zootaxa 4379, 145–150.
A new species of the endemic Australian genus Hyptiogaster Kieffer (Hymenoptera: Gasteruptiidae).Crossref | GoogleScholarGoogle Scholar | 29689981PubMed |

Parslow, B. A., Stevens, M. I., and Schwarz, M. P. (2018). First record of Gasteruption Latreille (Hymenoptera: Evanioidea: Gasteruptiidae) from Fiji with the description of a new species. Zootaxa 4407, 111–116.
First record of Gasteruption Latreille (Hymenoptera: Evanioidea: Gasteruptiidae) from Fiji with the description of a new species.Crossref | GoogleScholarGoogle Scholar | 29690208PubMed |

Parslow, B. A., Schwarz, M. P., and Stevens, M. I. (2020). Review of the biology and host associations of the wasp genus Gasteruption (Evanioidea: Gasteruptiidae). Zoological Journal of the Linnean Society , zlaa005.
Review of the biology and host associations of the wasp genus Gasteruption (Evanioidea: Gasteruptiidae).Crossref | GoogleScholarGoogle Scholar |

Pasteels, J. J. (1956). Révision du genre Gasteruption (Hymenoptera, Evanoidea, Gasteruptionidae). II. Espèces mélanésiennes. Nova Guinea, New Series 7, 207–248.

Pasteels, J. J. (1957). Revision du genre Gasteruption (Hymenoptera, Evanoidea, Gasteruptionidae): Especes australiennes. Institut Royal des Sciences Naturelles de Belgique 56, 1–125.

Pasteels, J. J. (1962). Espèces peu connues ou nouvelles du genre Gasteruption, en proveinance de l’Afrique noire (Hymenoptera, Evanoidea). Bulletin et Annales de la Société Royale Entomologique de Belgique 98, 49–60.

Peters, R. S., Krogmann, L., Mayer, C., Donath, A., Gunkel, S., Meusemann, K., Kozlov, A., Podsiadlowski, L., Petersen, M., Lanfear, R., Diez, P. A., Heraty, J., Kjer, K. M., Klopfstein, S., Meier, R., Polidori, C., Schmitt, T., Liu, S., Zhou, X., Wappler, T., Rust, J., Misof, B., and Niehuis, O. (2017). Evolutionary history of the Hymenoptera. Current Biology 27, 1013–1018.
Evolutionary history of the Hymenoptera.Crossref | GoogleScholarGoogle Scholar | 28343967PubMed |

Radnitsyn, A., Jarzembowski, E., and Ross, A. (1998). Wasps (Insecta: Vespida= Hymenoptera) from the Purbeck and Wealden (Lower Cretaceous) of southern England and their biostratigraphical and palaeoenvironmental significance. Cretaceous Research 19, 329–391.
Wasps (Insecta: Vespida= Hymenoptera) from the Purbeck and Wealden (Lower Cretaceous) of southern England and their biostratigraphical and palaeoenvironmental significance.Crossref | GoogleScholarGoogle Scholar |

Rambaut, A., Drummond, A. J., Xie, D., Baele, G., and Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901–904.
Posterior summarization in Bayesian phylogenetics using Tracer 1.7.Crossref | GoogleScholarGoogle Scholar | 29718447PubMed |

Rehan, S. M., Leys, R., and Schwarz, M. (2012). A Mid-Cretaceous origin of sociality in xylocopine bees with only two origins of true worker castes indicates severe barriers to eusociality. PLoS One 7, e34690.
A Mid-Cretaceous origin of sociality in xylocopine bees with only two origins of true worker castes indicates severe barriers to eusociality.Crossref | GoogleScholarGoogle Scholar | 22511959PubMed |

Sann, M., Niehuis, O., Peters, R. S., Mayer, C., Kozlov, A., Podsiadlowski, L., Bank, S., Meusemann, K., Misof, B., Bleidorn, C., and Ohl, M. (2018). Phylogenomic analysis of Apoidea sheds new light on the sister group of bees. BMC Evolutionary Biology 18, 71.
Phylogenomic analysis of Apoidea sheds new light on the sister group of bees.Crossref | GoogleScholarGoogle Scholar | 29776336PubMed |

Saure, C., Schmid-Egger, C., and van Achterberg, C. (2017). Order Hymenoptera, family Gasteruptiidae. In ‘Arthropod Fauna of the United Arab Emirates’. (Ed. A. van Harten.) pp. 190–224. (Department of the President’s Affairs: Abu Dhabi, UAE.)

Sharanowski, B. J., Peixoto, L., Molin, A. D., and Deans, A. (2019). Multi-gene phylogeny and divergence estimations for Evaniidae (Hymenoptera). PeerJ 7, e6689.
Multi-gene phylogeny and divergence estimations for Evaniidae (Hymenoptera).Crossref | GoogleScholarGoogle Scholar | 30976469PubMed |

Shi, G., Grimaldi, D. A., Harlow, G. E., Wang, J., Wang, J., Yang, M., Lei, W., Li, Q., and Li, X. (2012). Age constraint on Burmese amber based on U–Pb dating of zircons. Cretaceous Research 37, 155–163.
Age constraint on Burmese amber based on U–Pb dating of zircons.Crossref | GoogleScholarGoogle Scholar |

Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., and Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution 4, vey016.
Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10.Crossref | GoogleScholarGoogle Scholar | 29942656PubMed |

Tan, J.-L., van Achterberg, C., Tan, Q.-Q., and Chen, X.-x. (2016). Four new species of Gasteruption Latreille from NW China, with an illustrated key to the species from Palaearctic China (Hymenoptera, Gasteruptiidae). ZooKeys 612, 51–112.
Four new species of Gasteruption Latreille from NW China, with an illustrated key to the species from Palaearctic China (Hymenoptera, Gasteruptiidae).Crossref | GoogleScholarGoogle Scholar |

Tang, P., Zhu, J.-c., Zheng, B.-y., Wei, S.-j., Sharkey, M., Chen, X.-x., and Vogler, A. P. (2019). Mitochondrial phylogenomics of the Hymenoptera. Molecular Phylogenetics and Evolution 131, 8–18.
Mitochondrial phylogenomics of the Hymenoptera.Crossref | GoogleScholarGoogle Scholar | 30399430PubMed |

Turrisi, G. F., and Ellenberger, S. (2019). New aulacid wasps from the mid-Cretaceous of Myanmar (Hymenoptera: Evanioidea). Cretaceous Research 99, 334–346.
New aulacid wasps from the mid-Cretaceous of Myanmar (Hymenoptera: Evanioidea).Crossref | GoogleScholarGoogle Scholar |

Yu, Y., Harris, A. J., and He, X. (2010). S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution 56, 848–850.
S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories.Crossref | GoogleScholarGoogle Scholar | 20399277PubMed |

Yu, Y., Harris, A. J., Blair, C., and He, X. (2015). RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution 87, 46–49.
RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography.Crossref | GoogleScholarGoogle Scholar | 25819445PubMed |