Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

How ‘Gondwanan’ is Riethia? Molecular phylogenetics elucidates the mode and tempo of diversification in Austro-Pacific Chironominae (Diptera)

Matt N. Krosch A , Nicholas Herold B , Andrew H. Thornhill C D and Peter S. Cranston https://orcid.org/0000-0001-7535-9809 B E F
+ Author Affiliations
- Author Affiliations

A School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Qld 4000, Australia.

B Entomology and Nematology, University of California, Davis, CA 95616, USA.

C State Herbarium of South Australia, Botanic Gardens and State Herbarium, Department for Environment and Water, Adelaide, SA 5000, Australia.

D The University of Adelaide, Environment Institute, Adelaide, SA 5005, Australia.

E Evolution and Ecology, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2600, Australia.

F Corresponding author. Email: pscranston@gmail.com

Invertebrate Systematics 34(3) 328-341 https://doi.org/10.1071/IS19053
Submitted: 11 September 2019  Accepted: 5 March 2020   Published: 24 April 2020

Abstract

Riethia Kieffer, a genus of the non-biting midge subfamily Chironominae (Diptera: Chironomidae) is distributed in Australia, New Zealand, New Caledonia and South America. This austral distribution could be due to earth history (vicariance) or from Southern Hemisphere dispersal(s). We obtained samples from each area, most intensively from throughout Australia. We included putative sister genus Pseudochironomus Malloch, many genera from tribe Tanytarsini, enigmatic taxa in Chironomini and conventional outgroups from other subfamilies. We assembled a multilocus molecular dataset for four genetic regions from 107 individuals to reconstruct the first dated molecular phylogeny for the group. Four terminal clusters corresponded to unreared (thus unassociated) larvae. Monophyly was supported for ‘core’ Riethia, Pseudochironomus, putative tribe Pseudochironomini, tribe Tanytarsini (including enigmatic Nandeva Wiedenbrug, Reiss & Fittkau) and subfamily Chironominae. All species are monophyletic except for R. cinctipes Freeman, which includes R. neocaledonica Cranston. Riethia zeylandica Freeman, previously thought to be widespread in eastern Australia, now is a New Zealand endemic with Australian specimens allocated now to several regionally restricted species. The origin of Riethia was at 60.6 Ma (‘core’) or 52.1 Ma depending on the relationship of two South American species. Both dates are before the break-up of South America and Australia. Diversification within crown group Riethia started before the Cretaceous–Paleogene boundary, with subsequent separation at 52 Ma of an Australian ‘clade I’ from its sister ‘clade II’, which comprises Australian, New Zealand and New Caledonian species. Inferred dates for species origins of New Caledonia and New Zealand taxa imply transoceanic dispersals from eastern Australia. Western Australian species diverged during the mid to late Miocene from their eastern Australian sister taxa. This correlates with the onset of drying of Australia and the separation of mesic east from west by the formation of an arid proto-Nullarbor. Taken together, the inferred tempo of diversification in the group included both older ages reflecting earth history, yet with suggested recent intra-Pacific separations due to transoceanic dispersals.

Additional keywords: austral biogeography, Insecta, New Caledonia, New Zealand, Nullarbor, phylogeny, South America.


References

Andersen, T. (2016). Madachironomus, a new genus of tribe Pseudochironomini (Diptera: Chironomidae, Chironominae) from Madagascar. Chironomus – Journal of Chironomidae Research 29, 15–26.
Madachironomus, a new genus of tribe Pseudochironomini (Diptera: Chironomidae, Chironominae) from Madagascar.Crossref | GoogleScholarGoogle Scholar |

Andersen, T., Sæther, O. A., and Contreras-Ramos, A. (2011). New species and records of Nandeva Wiedenbrug, Reiss et Fittkau (Chironomidae: Chironominae. Zootaxa 3136, 45–60.
New species and records of Nandeva Wiedenbrug, Reiss et Fittkau (Chironomidae: Chironominae.Crossref | GoogleScholarGoogle Scholar |

Ansorge, J. (1999). Aenne liasina gen. et sp. n. the most primitive non-biting midge (Diptera: Chironomidae: Aenneinae subfam. n.) from the Lower Jurassic of Germany. Polskie Pismo Entomoliczne 68, 431–443.

Azar, D., and Nel, A. (2010). Two new non-biting midges from the Early Cretaceous Lebanese amber (Diptera: Chironomidae). Annales de la Société Entomologique de France 46, 198–203.
Two new non-biting midges from the Early Cretaceous Lebanese amber (Diptera: Chironomidae).Crossref | GoogleScholarGoogle Scholar |

Baranov, V., Góral, T., and Ross, A. (2017). A new genus of Buchonomyiinae (Diptera, Chironomidae) from Upper Cretaceous Burmese amber, with the phylogeny of the subfamily revisited. Cretaceous Research 79, 146–152.
A new genus of Buchonomyiinae (Diptera, Chironomidae) from Upper Cretaceous Burmese amber, with the phylogeny of the subfamily revisited.Crossref | GoogleScholarGoogle Scholar |

Baranov, V., Hoffeins, C., Hoffeins, H. W., and Haug, J. T. (2019). Reaching across the ocean of time: a midge morphotype from the Cretaceous of Gondwana found in the Eocene Baltic amber. Palaeontologia Electronica 22.2.38A, 1–17.
Reaching across the ocean of time: a midge morphotype from the Cretaceous of Gondwana found in the Eocene Baltic amber.Crossref | GoogleScholarGoogle Scholar |

Brundin, L. (1966). Transantarctic relationships and their significance, as evidenced by chironomid midges with a monograph of the subfamilies Podonominae and Aphroteniinae and the austral Heptagyiae. Kungl. Svenska Vetenskapsakademiens Handlingar 11, 1–472.

Brundin, L. (1976). A Neocomian chironomid and Podonominae– Aphroteniinae (Diptera) in the light of phylogenetics and biogeography. Zoologica Scripta 5, 139–160.
A Neocomian chironomid and Podonominae– Aphroteniinae (Diptera) in the light of phylogenetics and biogeography.Crossref | GoogleScholarGoogle Scholar |

Bryant, L. M., and Krosch, M. N. (2016). Lines in the land: a review of evidence for eastern Australia’s major biogeographical barriers to closed forest taxa. Biological Journal of the Linnean Society. Linnean Society of London 119, 238–264.
Lines in the land: a review of evidence for eastern Australia’s major biogeographical barriers to closed forest taxa.Crossref | GoogleScholarGoogle Scholar |

Buckley, T. R., Krosch, M., and Leschen, R. A. B. (2015). Evolution of New Zealand insects: summary and prospectus for future research. Austral Entomology 54, 1–27.
Evolution of New Zealand insects: summary and prospectus for future research.Crossref | GoogleScholarGoogle Scholar |

Byrne, M., Yeates, D. K., Joseph, L., Kearney, M., Bowler, J., Williams, M. A. J., Cooper, S., Donnellan, S. C., Keogh, J. S., Leys, R., Melville, J., Murphy, D. J., Porch, N., and Wyrwoll, K.-H. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.Crossref | GoogleScholarGoogle Scholar | 18761619PubMed |

Cook, L., and Crisp, M. (2005). Directional asymmetry of long-distance dispersal and colonization could mislead reconstructions of biogeography Journal of Biogeography 32, 741–754.
Directional asymmetry of long-distance dispersal and colonization could mislead reconstructions of biogeographyCrossref | GoogleScholarGoogle Scholar |

Cranston, P. S. (1996). Identification Guide to the Chironomidae of New South Wales. AWT Identification Guide number 1. Australian Water Technologies Pty Ltd, Sydney, NSW, Australia.

Cranston, P. S. (1999). Two unusual Chironomini (Diptera: Chironomidae) from Australian rainforest streams: one new genus and a neotropical genus new for the region. Australian Journal of Entomology 38, 291–299.
Two unusual Chironomini (Diptera: Chironomidae) from Australian rainforest streams: one new genus and a neotropical genus new for the region.Crossref | GoogleScholarGoogle Scholar |

Cranston, P. S. (2000). Electronic guide to the Chironomidae of Australia. Pics. 1–4. Available at http://apes.skullisland.info/sites/default/files/webfiles/members/pete/start.pdf [Verified 11 September 2019].

Cranston, P. S. (2003). The oriental genus Shangomyia Sæther & Wang (Chironomidae: Diptera): immature stages, biology, putative relationships and the evolution of wood mining in chironomid larvae. The Raffles Bulletin of Zoology 51, 179–186.

Cranston, P. S. (2019a). Riethia (Kieffer 1917) (Diptera: Chironomidae) revised for the Austro-Pacific region. Zootaxa 4646, 461–500.
Riethia (Kieffer 1917) (Diptera: Chironomidae) revised for the Austro-Pacific region.Crossref | GoogleScholarGoogle Scholar |

Cranston, P. S. (2019b). An enigmatic Chironomidae (Diptera): first larval description for Nandeva Wiedenbrug, Reiss and Fittkau and evidence for phylogenetic position in Tanytarsini. Chironomus – Journal of Chironomidae Research 32, 25–32.
An enigmatic Chironomidae (Diptera): first larval description for Nandeva Wiedenbrug, Reiss and Fittkau and evidence for phylogenetic position in Tanytarsini.Crossref | GoogleScholarGoogle Scholar |

Cranston, P. S., and Krosch, M. N. (2015). Molecules and morphology include the informal taxon ‘Genus Chile’ in Podonomopsis Brundin (Chironomidae: Podonominae). Invertebrate Systematics 29, 610–627.
Molecules and morphology include the informal taxon ‘Genus Chile’ in Podonomopsis Brundin (Chironomidae: Podonominae).Crossref | GoogleScholarGoogle Scholar |

Cranston, P. S., and Naumann, I. D. (1991) Biogeography. In ‘The Insects of Australia’. (Ed. I. D. Naumann.). pp. 180–197. (CSIRO Publishing: Melbourne, Vic., Australia.)

Cranston, P. S., Edward, D. H. D., and Cook, L. G. (2002). New status, species, distribution records and phylogeny for Australian mandibulate Chironomidae (Diptera). Australian Journal of Entomology 41, 357–366.
New status, species, distribution records and phylogeny for Australian mandibulate Chironomidae (Diptera).Crossref | GoogleScholarGoogle Scholar |

Cranston, P. S., Hardy, N. B., Morse, G. E., Puslednik, L., and McCluen, S. R. (2010). When morphology and molecules concur: the ‘Gondwanan’ midges (Diptera: Chironomidae). Systematic Entomology 35, 636–648.
When morphology and molecules concur: the ‘Gondwanan’ midges (Diptera: Chironomidae).Crossref | GoogleScholarGoogle Scholar |

Cranston, P. S., Hardy, N. B., and Morse, G. E. (2012). A dated molecular phylogeny for the Chironomidae (Diptera). Systematic Entomology 37, 172–188.
A dated molecular phylogeny for the Chironomidae (Diptera).Crossref | GoogleScholarGoogle Scholar |

Crisp, M. P., and Cook, L. (2007). A congruent molecular signature of vicariance across multiple plant lineages. Molecular Phylogenetics and Evolution 43, 1106–1117.
A congruent molecular signature of vicariance across multiple plant lineages.Crossref | GoogleScholarGoogle Scholar |

Crisp, M. P., and Cook, L. (2013). How was the Australian flora assembled over the last 65 million years? A molecular phylogenetic perspective. Annual Review of Ecology, Evolution, and Systematics 44, 303–324.
How was the Australian flora assembled over the last 65 million years? A molecular phylogenetic perspective.Crossref | GoogleScholarGoogle Scholar |

Drummond, A. J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar | 17996036PubMed |

Drummond, A. J., Ho, S. Y. W., Phillips, M. J., and Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology 4, e88.
Relaxed phylogenetics and dating with confidence.Crossref | GoogleScholarGoogle Scholar | 16683862PubMed |

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti, and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti, and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 22367748PubMed |

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy, and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy, and high throughput.Crossref | GoogleScholarGoogle Scholar | 15034147PubMed |

Edwards, F. W. (1931). ‘Diptera of Patagonia and South Chile. Part II. Fascicle 5. – Chironomidae.’ pp. 233–331. (Trustees of the British Museum (Natural History): London, UK.)

Epler, J. H., Ekrem, T., and Cranston, P. S. (2013). The larvae of Chironominae (Diptera: Chironomidae) of the Holarctic region – keys and diagnoses. In ‘The Larvae of Chironomidae (Diptera) of the Holarctic Region – Keys and Diagnoses’. (Eds T. Andersen, P. S. Cranston, and J. H. Epler.) Insect Systematics & Evolution66 (Suppl.), pp. 387–556. (Scandinavian Entomology: Lund, Sweden.)

Freeman, P. (1959). A study of the New Zealand Chironomidae (Diptera, Nematocera). Bulletin of the British Museum (Natural History), Entomology 7, 395–437.

Freeman, P. (1961). The Chironomidae of Australia. Australian Journal of Zoology 9, 611–737.
The Chironomidae of Australia.Crossref | GoogleScholarGoogle Scholar |

Giłka, W. (2010). A new species group in the genus Tanytarsus van der Wulp (Diptera: Chironomidae) based on a fossil record from Baltic amber. Acta Geologica Sinica 84, 714–719.
A new species group in the genus Tanytarsus van der Wulp (Diptera: Chironomidae) based on a fossil record from Baltic amber.Crossref | GoogleScholarGoogle Scholar |

Giłka, W. (2011). A new fossil Tanytarsus from Eocene Baltic amber, with notes on systematics of the genus (Diptera: Chironomidae). Zootaxa 3069, 63–68.
A new fossil Tanytarsus from Eocene Baltic amber, with notes on systematics of the genus (Diptera: Chironomidae).Crossref | GoogleScholarGoogle Scholar |

Giłka, W., Zakrzewska, M., Baranov, V., Wang, B., and Stebner, F. (2016). The first fossil record of Nandeva Wiedenbrug, Reiss et Fittkau (Diptera: Chironomidae) in early Eocene Fushun amber from China. Alcheringa: an Australasian Journal of Palaeontology 40, 390–397.
The first fossil record of Nandeva Wiedenbrug, Reiss et Fittkau (Diptera: Chironomidae) in early Eocene Fushun amber from China.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., and Baker, C. M. (2019). Further discussion on the Eocene drowning of New Caledonia: discordances from the point of view of zoology Journal of Biogeography 46, 1912–1918.
Further discussion on the Eocene drowning of New Caledonia: discordances from the point of view of zoologyCrossref | GoogleScholarGoogle Scholar |

Giribet, G., and Boyer, S. L. (2010). ‘Moa’s Ark’ or ‘Goodbye Gondwana’: is the origin of New Zealand’s terrestrial invertebrate fauna ancient, recent, or both? Invertebrate Systematics 24, 1–8.
‘Moa’s Ark’ or ‘Goodbye Gondwana’: is the origin of New Zealand’s terrestrial invertebrate fauna ancient, recent, or both?Crossref | GoogleScholarGoogle Scholar |

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.

He, T., Lamont, B. B., and Fogliani, B. (2016). Pre-Gondwanan-breakup origin of Beauprea (Proteaceae) explains its historical presence in New Caledonia and New Zealand. Science Advances 2, e1501648.
Pre-Gondwanan-breakup origin of Beauprea (Proteaceae) explains its historical presence in New Caledonia and New Zealand.Crossref | GoogleScholarGoogle Scholar | 27386508PubMed |

Heads, M. (2019). Recent advances in New Caledonian biogeography. Biological Reviews of the Cambridge Philosophical Society 94, 957–980.
Recent advances in New Caledonian biogeography.Crossref | GoogleScholarGoogle Scholar | 30523662PubMed |

Hong, Y. C., and Wang, W. L. (1990). Fossil insects from the Laiyang basin, Shandong province. In ‘The Stratigraphy and Palaeontology of Laiyang Basin, Shandong Province’. (Ed. Regional Geological Surveying Team, Shandong Bureau of Geology and Mineral Resources.) pp. 44–189. (Geological Publishing House: Beijing, PR China.)

Huelsenbeck, J. P., and Ronquist, F. (2001). MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754–755.
MrBayes: Bayesian inference of phylogeny.Crossref | GoogleScholarGoogle Scholar | 11524383PubMed |

Kalugina, N. S. (1974). Change in the subfamily composition of chironomids (Diptera, Chironomidae) as an indicator of possible eutrophication of bodies of water during the late Mesozoic. Biology Bulletin of the Academy of Sciences of the USSR 79, 45–56.

Krosch, M. N., and Cranston, P. S. (2012). Non-destructive DNA extraction, including of fragile pupal exuviae, extends analysable collections and enhances vouchering. Chironomus – Journal of Chironomidae Research 25, 22–27.
Non-destructive DNA extraction, including of fragile pupal exuviae, extends analysable collections and enhances vouchering.Crossref | GoogleScholarGoogle Scholar |

Krosch, M. N., and Cranston, P. S. (2013). Not drowning, (hand)waving? Molecular phylogenetics, biogeography and evolutionary tempo of the ‘gondwanan’ midge Stictocladius Edwards (Diptera: Chironomidae). Molecular Phylogenetics and Evolution 68, 595–603.
Not drowning, (hand)waving? Molecular phylogenetics, biogeography and evolutionary tempo of the ‘gondwanan’ midge Stictocladius Edwards (Diptera: Chironomidae).Crossref | GoogleScholarGoogle Scholar |

Krosch, M. N., Baker, A. M., Mather, P. B., and Cranston, P. S. (2011). Systematics and biogeography of the Gondwanan Orthocladiinae (Diptera: Chironomidae). Molecular Phylogenetics and Evolution 59, 458–468.
Systematics and biogeography of the Gondwanan Orthocladiinae (Diptera: Chironomidae).Crossref | GoogleScholarGoogle Scholar | 21402162PubMed |

Krosch, M. N., Cranston, P. S., Baker, A. M., and Vink, S. (2015). Molecular data extend Australian Cricotopus midge (Chironomidae) species diversity, and provide a phylogenetic hypothesis for biogeography and freshwater monitoring. Zoological Journal of the Linnean Society 175, 496–509.
Molecular data extend Australian Cricotopus midge (Chironomidae) species diversity, and provide a phylogenetic hypothesis for biogeography and freshwater monitoring.Crossref | GoogleScholarGoogle Scholar |

Lin, X.-L., Stur, E., and Ekrem, T. (2018). Molecular phylogeny and temporal diversification of Tanytarsus van der Wulp (Diptera: Chironomidae) support generic synonymies, a new classification and centre of origin. Systematic Entomology 43, 659–677.
Molecular phylogeny and temporal diversification of Tanytarsus van der Wulp (Diptera: Chironomidae) support generic synonymies, a new classification and centre of origin.Crossref | GoogleScholarGoogle Scholar |

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA’. (Ed. Institute of Electrical and Electronics Engineers.) pp. 1–8. (Curran Associates, Inc.: New York, NY, USA.)

Moulton, J. K., and Wiegmann, B. M. (2004). Evolution, and phylogenetic utility of CAD (rudimentary) among Mesozoic-aged Eremoneuran Diptera (Insecta). Molecular Phylogenetics and Evolution 31, 363–378.
Evolution, and phylogenetic utility of CAD (rudimentary) among Mesozoic-aged Eremoneuran Diptera (Insecta).Crossref | GoogleScholarGoogle Scholar | 15019631PubMed |

Murienne, J., Grandcolas, P., Puilachs, M. D., Bellés, X., D’Haese, C., Legendre, F., Pellens, R., and Guilbert, E. (2005). Evolution on a shaky piece of Gondwana: is local endemism recent in New Caledonia? Cladistics 21, 2–7.
Evolution on a shaky piece of Gondwana: is local endemism recent in New Caledonia?Crossref | GoogleScholarGoogle Scholar |

Nattier, R., Pellens, R., Robillard, T., Jourdan, H., Legendre, F., Caesar, M., Nel, A., and Grandcolas, P. (2017). Updating the phylogenetic dating of New Caledonian biodiversity with a meta‐analysis of the available evidence. Scientific Reports 7, 3705.
Updating the phylogenetic dating of New Caledonian biodiversity with a meta‐analysis of the available evidence.Crossref | GoogleScholarGoogle Scholar | 28623347PubMed |

Neubern, C. S. O., Trivinho-Strixino, S., and Silva, F. L. (2011). Riethia manauara n. sp., an Amazonian chironomid (Diptera: Chironomidae) from Brazil. Neotropical Entomology 40, 595–599.
Riethia manauara n. sp., an Amazonian chironomid (Diptera: Chironomidae) from Brazil.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 12912839PubMed |

Sæther, O. A. (1977). Taxonomic studies on Chironomidae: Nanocladius, Pseudochironomus, and the Harnischia complex. Bulletin – Fisheries Research Board of Canada 196, 1–143.

Sanmartín, I., Wanntorp, L., and Winkworth, R. C. (2007). West Wind Drift revisited: testing for directional dispersal in the Southern Hemisphere using event-based tree fitting. Journal of Biogeography 34, 398–416.
West Wind Drift revisited: testing for directional dispersal in the Southern Hemisphere using event-based tree fitting.Crossref | GoogleScholarGoogle Scholar |

Schlee, D. (1975). Das Problem der Podonominae-Monophylie; Fossiliendiagnose und Chironomidae-Phylogenetik (Diptera). Entomologica Germanica 1, 316–351.

Sharma, P. P., and Wheeler, W. C. (2013). Revenant clades in historical biogeography: the geology of New Zealand predisposes endemic clades to root age shifts. Journal of Biogeography 40, 1609–1618.
Revenant clades in historical biogeography: the geology of New Zealand predisposes endemic clades to root age shifts.Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 16928733PubMed |

Stuut, J.-B. W., De Deckker, P., Saavedra‐Pellitero, M., Bassinot, F., Drury, A. J., Walczak, M. H., Nagashima, K., and Murayama, M. (2019). A 5.3‐million‐year history of monsoonal precipitation in northwestern Australia. Geophysical Research Letters 46, 6946–6954.
A 5.3‐million‐year history of monsoonal precipitation in northwestern Australia.Crossref | GoogleScholarGoogle Scholar |

Tang, H.-Q., and Cranston, P. S. (2019). A new tribe in the Chironominae (Diptera, Chironomidae) validated by first immature stages of Xiaomyia Sæther & Wang and a phylogenetic review. The Raffles Bulletin of Zoology 67, 684–693.
A new tribe in the Chironominae (Diptera, Chironomidae) validated by first immature stages of Xiaomyia Sæther & Wang and a phylogenetic review.Crossref | GoogleScholarGoogle Scholar |

Trewick, S. A., Paterson, A. M., and Campbell, H. J. (2007). Hello New Zealand. Journal of Biogeography 34, 1–6.
Hello New Zealand.Crossref | GoogleScholarGoogle Scholar |

Trivinho-Strixino, S., and Shimabakuro, E. M. (2018). Brazilian Pseudochironomini (Diptera: Chironomidae) Part 2. New Pseudochironomus and Riethia species. Zootaxa 4403, 245–260.
Brazilian Pseudochironomini (Diptera: Chironomidae) Part 2. New Pseudochironomus and Riethia species.Crossref | GoogleScholarGoogle Scholar | 29690232PubMed |

Trivinho-Strixino, S., Roque, F. O., and Cranston, P. S. (2009). Redescription of Riethia truncatocaudata (Edwards 1931) (Diptera: Chironomidae), with description of female, pupa and larva and generic diagnosis for Riethia. Aquatic Insects 31, 247–259.
Redescription of Riethia truncatocaudata (Edwards 1931) (Diptera: Chironomidae), with description of female, pupa and larva and generic diagnosis for Riethia.Crossref | GoogleScholarGoogle Scholar |

Wallis, G., and Jorge, F. (2018). Going under down under? Lineage ages argue for extensive survival of the Oligocene marine transgression on Zealandia. Molecular Ecology 27, 4368–4396.
Going under down under? Lineage ages argue for extensive survival of the Oligocene marine transgression on Zealandia.Crossref | GoogleScholarGoogle Scholar | 30240539PubMed |

Worthy, T. H., De Pietri, V. L., and Scofield, P. (2017). Recent advances in avian palaeobiology in New Zealand with implications for understanding New Zealand’s geological, climatic and evolutionary histories. New Zealand Journal of Zoology 44, 177–211.
Recent advances in avian palaeobiology in New Zealand with implications for understanding New Zealand’s geological, climatic and evolutionary histories.Crossref | GoogleScholarGoogle Scholar |

Zakrzewska, M., Krzemiński, W., and Giłka, W. (2016). Towards the diversity of non-biting midges of the tribe Tanytarsini from Eocene Baltic amber (Diptera: Chironomidae). Palaeontologia Electronica 19, 1–21.
Towards the diversity of non-biting midges of the tribe Tanytarsini from Eocene Baltic amber (Diptera: Chironomidae).Crossref | GoogleScholarGoogle Scholar |

Zakrzewska, M., Stebner, F., Puchalski, M., Singh, H., and Giłka, W. (2018). A peculiar leg structure in the first non-biting midge described from Cambay amber, India (Diptera: Chironomidae). Earth and Environmental Science Transactions of the Royal Society of Edinburgh 107, 255–261.
A peculiar leg structure in the first non-biting midge described from Cambay amber, India (Diptera: Chironomidae).Crossref | GoogleScholarGoogle Scholar |

Zakrzewska, M., Singh, H., Wagner-Wysiecka, E., and Giłka, W. (2020). Minute and diverse in fossil sticky stuff: Tanytarsini (Diptera: Chironomidae) from early Eocene Indian Cambay amber. Zoological Journal of the Linnean Society , zlz159.
Minute and diverse in fossil sticky stuff: Tanytarsini (Diptera: Chironomidae) from early Eocene Indian Cambay amber.Crossref | GoogleScholarGoogle Scholar |