Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Candidate cases of poecilogony in Neogastropoda: implications for the systematics of the genus Raphitoma Bellardi, 1847

Valeria Russini A , Riccardo Giannuzzi-Savelli B , Francesco Pusateri C , Jakov Prkić D , Giulia Fassio A , Maria Vittoria Modica E F and Marco Oliverio https://orcid.org/0000-0002-0316-4364 A G
+ Author Affiliations
- Author Affiliations

A Department of Biology and Biotechnologies ‘Charles Darwin’ Zoology, Viale dell’Università 32, I-00185 Roma, Italy.

B Via Mater Dolorosa 54, I-90146 Palermo, Italy.

C Via Castellana 64, I-90135 Palermo, Italy.

D Getaldićeva 11, HR-21000 Split, Croatia.

E Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Naples, Italy.

F UMR5247, University of Montpellier, Place Eugène Bataillon, F-34095 Montpellier, France.

G Corresponding author. Email: marco.oliverio@uniroma1.it

Invertebrate Systematics 34(3) 293-318 https://doi.org/10.1071/IS19039
Submitted: 21 August 2019  Accepted: 16 February 2020   Published: 24 April 2020

Abstract

Poecilogony is the intraspecific variation in developmental mode, with larvae of different types produced by the same individual, population or species. It is very rare among marine invertebrates, and in gastropods has long been described only in a few opisthobranchs. The physiological and regulatory mechanisms underlying larval evolutionary transitions, such as loss of planktotrophy that occurred repeatedly in many caenogastropod lineages, are still largely unknown. We have studied the inter- v. intraspecific variation in larval development in the north-east Atlantic neogastropod genus Raphitoma Bellardi, 1847, starting with an iterative taxonomy approach: 17 morphology-based Preliminary Species Hypotheses were tested against a COI molecular-distance-based method (ABGD), and the retained species hypotheses were eventually inspected for reciprocal monophyly on a multilocus dataset. We subsequently performed an ancestral state reconstruction on an ultrametric tree of the 10 Final Species Hypotheses, time-calibrated by fossils, revealing that the interspecific changes were planktotrophy > lecithotrophy, and all have occurred in the Pleistocene, after 2.5 million years ago. This is suggestive of a major role played by Pleistocene Mediterranean oceanographic conditions – enhanced oligotrophy, unpredictable availability of water column resources – likely to favour loss of planktotrophy. Within this group of species, which has diversified after the Miocene, we identified one pair of sibling species differing in their larval development, Raphitoma cordieri (Payraudeau, 1826) and R. horrida (Monterosato, 1884). However, we also identified two Final Species Hypotheses, each comprising individuals with both larval developmental types. Our working hypothesis is that they correspond to one or two poecilogonous species. If confirmed by other nuclear markers, this would be the first documentation of poecilogony in the Neogastropoda, and the second in the whole Caenogastropoda. Although sibling species with different developmental strategies may offer good models to study some evolutionary aspects, poecilogonous taxa are optimally suited for identifying regulatory and developmental mechanisms underlying evolutionary transitions.

Additional keywords: evolution, Gastropoda, iterative taxonomy, lecithotrophy, planktotrophy.


References

Alfaro, M. E., and Holder, M. T. (2006). The posterior and the prior in Bayesian phylogenetics. Annual Review of Ecology, Evolution, and Systematics 37, 19–42.
The posterior and the prior in Bayesian phylogenetics.Crossref | GoogleScholarGoogle Scholar |

Barco, A., Raupach, M. J., Laakmann, S., Neumann, H., and Knebelsberger, T. (2016). Identification of North Sea molluscs with DNA barcoding. Molecular Ecology Resources. 16, 288–297.
Identification of North Sea molluscs with DNA barcoding. Molecular Ecology Resources.Crossref | GoogleScholarGoogle Scholar | 26095230PubMed |

Bethoux, J.-P. (1979). Le régime de la Méditerranée au cours de périodes glaciaires. Il Nuovo Cimento 2, 117–126.
Le régime de la Méditerranée au cours de périodes glaciaires.Crossref | GoogleScholarGoogle Scholar |

Bethoux, J.-P. (1984). Paléo-hydrologie de la Méditerranée au cours des derniers 20 000 ans. Oceanologica Acta 7, 43–48.

Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K., Meier, R., Winker, K., Ingram, K. K., and Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22, 148–155.
Cryptic species as a window on diversity and conservation.Crossref | GoogleScholarGoogle Scholar |

Blake, J. A., and Arnofsky, P. L. (1999). Reproduction and larval development of the spioniform Polychaeta with application to systematics and phylogeny. Hydrobiologia 402, 57–106.
Reproduction and larval development of the spioniform Polychaeta with application to systematics and phylogeny.Crossref | GoogleScholarGoogle Scholar |

Bouchet, P. (1989). A review of poecilogony in gastropods. The Journal of Molluscan Studies 55, 67–78.
A review of poecilogony in gastropods.Crossref | GoogleScholarGoogle Scholar |

Bouchet, P. (1990). Turrid genera and mode of development: the use and abuse of protoconch morphology. Malacologia 32, 69–77.

Chia, F. S., Gibson, G., and Qian, P. Y. (1996). Poecilogony as a reproductive strategy of marine invertebrates. Oceanologica Acta 19, 203–208.

Collin, R. (2001). The effects of mode of development on phylogeography and population structure of North Atlantic Crepidula (Gastropoda: Calyptraeidae). Molecular Ecology 10, 2249–2262.
The effects of mode of development on phylogeography and population structure of North Atlantic Crepidula (Gastropoda: Calyptraeidae).Crossref | GoogleScholarGoogle Scholar | 11555267PubMed |

Collin, R. (2002). Another last word on Crepidula convexa with a description of C. ustulatulina n. sp. (Gastropoda: Calyptraeidae) from the Gulf of Mexico and southern Florida. Bulletin of Marine Science 70, 177–184.

Collin, R. (2004). Phylogenetic effects, the loss of complex characters, and the evolution of development in calyptraeid gastropods. Evolution 58, 1488–1502.
Phylogenetic effects, the loss of complex characters, and the evolution of development in calyptraeid gastropods.Crossref | GoogleScholarGoogle Scholar | 15341151PubMed |

Cowen, R. K., and Sponaugle, S. (2009). Larval dispersal and marine population connectivity. Annual Review of Marine Science 1, 443–466.
Larval dispersal and marine population connectivity.Crossref | GoogleScholarGoogle Scholar | 21141044PubMed |

Crosse, H. (1885). Nomenclature generica e specifica di alcune Conchiglie Mediterranee, pel marchese di Monterosato. Journal de Conchyliologie 33, 139–142.

David, A. A., Matthee, C. A., and Simon, C. A. (2014). Poecilogony in Polydora hoplura (Polychaeta: Spionidae) from commercially important molluscs in South Africa. Marine Biology 161, 887–898.
Poecilogony in Polydora hoplura (Polychaeta: Spionidae) from commercially important molluscs in South Africa.Crossref | GoogleScholarGoogle Scholar |

di Monterosato, T. A. (1872). ‘Notizie Intorno alle Conchiglie Mediterranee.’ (Michele Amenta: Palermo, Italy.)

di Monterosato, T. A. (1884). ‘Nomenclatura Generica e Specifica di Alcune Conchiglie Mediterranee.’ (Virzi: Palermo, Italy.)

Duchêne, J.-C. (2000). Effects of poecilogony and delayed larval emission on recruitment of subantarctic population of Boccardia polybranchia (Polychaeta: Spionidae). Bulletin of Marine Science 67, 311–319.

Ellingson, R. A., and Krug, P. J. (2006). Evolution of poecilogony from planktotrophy: cryptic speciation, phylogeography, and larval development in the gastropod genus Alderia. Evolution 60, 2293–2310.
Evolution of poecilogony from planktotrophy: cryptic speciation, phylogeography, and larval development in the gastropod genus Alderia.Crossref | GoogleScholarGoogle Scholar | 17236422PubMed |

Ellingson, R. A., and Krug, P. J. (2016). Reduced genetic diversity and increased reproductive isolation follow population-level loss of larval dispersal in a marine gastropod. Evolution 70, 18–37.
Reduced genetic diversity and increased reproductive isolation follow population-level loss of larval dispersal in a marine gastropod.Crossref | GoogleScholarGoogle Scholar | 26635309PubMed |

Fassio, G., Russini, V., Pusateri, F., Giannuzzi-Savelli, R., Høisæter, T., Puillandre, N., Modica, M. V., and Oliverio, M. (2019). An assessment of Raphitoma and allied genera (Gastropoda, Conoidea, Raphitomidae). The Journal of Molluscan Studies 85, 414–425.
An assessment of Raphitoma and allied genera (Gastropoda, Conoidea, Raphitomidae).Crossref | GoogleScholarGoogle Scholar |

Fedosov, A. E., and Puillandre, N. (2012). Phylogeny and taxonomy of the KermiaPseudodaphnella (Mollusca: Gastropoda: Raphitomidae) genus complex: a remarkable radiation via diversification of larval development. Systematics and Biodiversity 10, 447–477.
Phylogeny and taxonomy of the KermiaPseudodaphnella (Mollusca: Gastropoda: Raphitomidae) genus complex: a remarkable radiation via diversification of larval development.Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates.Crossref | GoogleScholarGoogle Scholar | 7881515PubMed |

Galindo, L. A., Puillandre, N., Strong, E. E., and Bouchet, P. (2014). Using microwaves to prepare gastropods for DNA barcoding. Molecular Ecology Resources 14, 700–705.
Using microwaves to prepare gastropods for DNA barcoding.Crossref | GoogleScholarGoogle Scholar | 24450943PubMed |

Galindo, L. A., Puillandre, N., Utge, J., Lozouet, P., and Bouchet, P. (2016). The phylogeny and systematics of the Nassariidae revisited (Gastropoda, Buccinoidea). Molecular Phylogenetics and Evolution 99, 337–353.
The phylogeny and systematics of the Nassariidae revisited (Gastropoda, Buccinoidea).Crossref | GoogleScholarGoogle Scholar | 27012605PubMed |

Gernhard, T. (2008). The conditioned reconstructed process. Journal of Theoretical Biology 253, 769–778.
The conditioned reconstructed process.Crossref | GoogleScholarGoogle Scholar | 18538793PubMed |

Giannuzzi-Savelli, R., Pusateri, F., Bartolini, S., and Oliverio, M. (2017). A revision of the Mediterranean Raphitomidae (Neogastropoda, Conoidea). 4. The species of the group of Raphitoma purpurea (Montagu, 1803) with the description of a new species. Bollettino Malacologico 53, 161–183.

Giannuzzi-Savelli, R., Pusateri, F., and Bartolini, S. (2018a). A revision of the Mediterranean Raphitomidae (Gastropoda: Conoidea). 5. Loss of planktotrophy and pairs of species, with the description of four new species. Bollettino Malacologico 54, 1–77.

Giannuzzi-Savelli, R., Pusateri, F., and Bartolini, S. (2018b). A revision of the Mediterranean Raphitomidae (Gastropoda, Conoidea). 7. On the sibling species Raphitoma densa (Monterosato, 1884) and R. griseomaculata n. sp. Biodiversity Journal 9, 429–440.
A revision of the Mediterranean Raphitomidae (Gastropoda, Conoidea). 7. On the sibling species Raphitoma densa (Monterosato, 1884) and R. griseomaculata n. sp.Crossref | GoogleScholarGoogle Scholar |

Giard, A. (1905). La Poecilogonie. In ‘Compte-Rendu Des Séances du Sixième Congrès International de Zoologie’, 14–19 August 1904, Berne, Switzerland. (Ed. M. Bedot) pp. 617–646. (W. Kündig & Fils, Geneva, Switzerland)

Haszprunar, G. (1995). On the evolution of larval development in the Gastropoda, with special reference to larval planktotrophy. Notiziario CISMA 16, 5–13.

Haszprunar, G., Salvini-Plawen, L. v., and Rieger, R. M. (1995). Larval planktotrophy – a primitive trait in the Bilateria? Acta Zoologica 76, 141–154.
Larval planktotrophy – a primitive trait in the Bilateria?Crossref | GoogleScholarGoogle Scholar |

Hayashi, S. (2014). The molecular phylogeny of the Buccinidae (Caenogastropoda: Neogastropoda) as inferred from the complete mitochondrial 16S rRNA gene sequences of selected representatives. Molluscan Research 25, 85–98.

Hillis, D., and Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42, 182–192.
An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Ho, S. Y. W., and Phillips, M. J. (2009). Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology 58, 367–380.
Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times.Crossref | GoogleScholarGoogle Scholar |

Hoagland, K. E., and Robertson, R. (1988). An assessment of poecilogony in marine invertebrates: phenomenon or fantasy? The Biological Bulletin 174, 109–125.
An assessment of poecilogony in marine invertebrates: phenomenon or fantasy?Crossref | GoogleScholarGoogle Scholar |

Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q., and Vinh, L. S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35, 518–522.
UFBoot2: improving the ultrafast bootstrap approximation.Crossref | GoogleScholarGoogle Scholar | 29077904PubMed |

Jablonski, D., and Lutz, R. A. (1983). Larval ecology of marine benthic invertebrates: paleobiological implications. Biological Reviews of the Cambridge Philosophical Society 58, 21–89.
Larval ecology of marine benthic invertebrates: paleobiological implications.Crossref | GoogleScholarGoogle Scholar |

Jaeckle, W. B., and Manahan, D. T. (1989). Feeding by a ‘nonfeeding’ larva: uptake of dissolved amino acids from seawater by lecithotrophic larvae of the gastropod Haliotis rufescens. Marine Biology 103, 87–94.
Feeding by a ‘nonfeeding’ larva: uptake of dissolved amino acids from seawater by lecithotrophic larvae of the gastropod Haliotis rufescens.Crossref | GoogleScholarGoogle Scholar |

Jeffreys, J. G. (1870). Mediterranean Mollusca. Annals and Magazine of Natural History ser. 4 6, 65–86.
Mediterranean Mollusca.Crossref | GoogleScholarGoogle Scholar |

Katoh, K., Rozewicki, J., and Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20, 1160–1166.
MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization.Crossref | GoogleScholarGoogle Scholar | 28968734PubMed |

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Sturrock, S., Buxton, S., Cooper, A., Markowitx, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |

Kendall, D. G. (1948). On the generalized ‘birth-and-death’ process. Annals of Mathematical Statistics 19, 1–15.
On the generalized ‘birth-and-death’ process.Crossref | GoogleScholarGoogle Scholar |

Knott, K. E., and McHugh, D. (2012). Introduction to symposium: Poecilogony – a window on larval evolutionary transitions in marine invertebrates. Integrative and Comparative Biology 52, 120–127.
Introduction to symposium: Poecilogony – a window on larval evolutionary transitions in marine invertebrates.Crossref | GoogleScholarGoogle Scholar | 22495287PubMed |

Knowlton, N. (2000). Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420, 73–90.
Molecular genetic analyses of species boundaries in the sea.Crossref | GoogleScholarGoogle Scholar |

Krug, P. J. (1998). Poecilogony in an estuarine opisthobranch: planktotrophy, lecithotrophy, and mixed clutches in a population of the ascoglossan Alderia modesta. Marine Biology 132, 483–494.
Poecilogony in an estuarine opisthobranch: planktotrophy, lecithotrophy, and mixed clutches in a population of the ascoglossan Alderia modesta.Crossref | GoogleScholarGoogle Scholar |

Krug, P. J. (2007). Poecilogony and larval ecology in the gastropod genus Alderia. American Malacological Bulletin 23, 99–111.
Poecilogony and larval ecology in the gastropod genus Alderia.Crossref | GoogleScholarGoogle Scholar |

Krug, P. J. (2009). Not my ‘type’: larval dispersal dimorphisms and bet-hedging in opisthobranch life histories. The Biological Bulletin 216, 355–372.
Not my ‘type’: larval dispersal dimorphisms and bet-hedging in opisthobranch life histories.Crossref | GoogleScholarGoogle Scholar | 19556600PubMed |

Kruse, I., Reusch, T. B. H., and Schneider, M. V. (2003). Sibling species or poecilogony in the polychaete Scoloplos armiger? Marine Biology 142, 937–947.
Sibling species or poecilogony in the polychaete Scoloplos armiger?Crossref | GoogleScholarGoogle Scholar |

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 1870–1874.
MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets.Crossref | GoogleScholarGoogle Scholar | 27004904PubMed |

Kuraku, S., Zmasek, C. M., Nishimura, O., and Katoh, K. (2013). aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Research 41, W22–W28.
aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity.Crossref | GoogleScholarGoogle Scholar | 23677614PubMed |

Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., and Calcott, B. (2016). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34, 772–773.
PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Manahan, D. T. (1990). Adaptations by invertebrate larvae for nutrient acquisition from seawater. American Zoologist 30, 147–160.
Adaptations by invertebrate larvae for nutrient acquisition from seawater.Crossref | GoogleScholarGoogle Scholar |

McDonald, K. A., Collin, R., and Lesoway, M. P. (2014). Poecilogony in the caenogastropod Calyptraea lichen (Mollusca: Gastropoda). Invertebrate Biology 133, 213–220.
Poecilogony in the caenogastropod Calyptraea lichen (Mollusca: Gastropoda).Crossref | GoogleScholarGoogle Scholar |

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘2010 Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. INSPEC Accession Number: 11705685. (IEEE.) 10.1109/GCE.2010.5676129

Modica, M. V., Russini, V., Fassio, G., and Oliverio, M. (2017). Do larval types affect genetic connectivity at sea? Testing hypothesis in two sibling marine gastropods with contrasting larval development. Marine Environmental Research 127, 92–101.
Do larval types affect genetic connectivity at sea? Testing hypothesis in two sibling marine gastropods with contrasting larval development.Crossref | GoogleScholarGoogle Scholar | 28413103PubMed |

Moran, A. L., and McAlister, J. S. (2009). Egg size as a life history character of marine invertebrates: is it all it’s cracked up to be? The Biological Bulletin 216, 226–242.
Egg size as a life history character of marine invertebrates: is it all it’s cracked up to be?Crossref | GoogleScholarGoogle Scholar | 19556591PubMed |

Morgan, T., Rogers, A., Paterson, G., Hawkins, L., and Sheader, M. (1999). Evidence for poecilogony in Pygospio elegans (Polychaeta: Spionidae). Marine Ecology Progress Series 178, 121–132.
Evidence for poecilogony in Pygospio elegans (Polychaeta: Spionidae).Crossref | GoogleScholarGoogle Scholar |

Nguyen, L., Schmidt, H. A., Von Haeseler, A., and Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.
IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.Crossref | GoogleScholarGoogle Scholar | 25371430PubMed |

Nützel, A. (2014). Larval ecology and morphology in fossil gastropods. Palaeontology 57, 479–503.
Larval ecology and morphology in fossil gastropods.Crossref | GoogleScholarGoogle Scholar |

Oliverio, M. (1996a). Contrasting developmental strategies and speciation in NE Atlantic prosobranchs: a preliminary analysis. In ‘Origin and Evolutionary Radiation of the Mollusca’. (Ed. J. D. Taylor.) pp. 261–266. (Oxford University Press: Oxford, MA, USA.)

Oliverio, M. (1996b). Life-histories, speciation, and biodiversity in Mediterranean prosobranch gastropods. Vie et Milieu 46, 163–169.

Oliverio, M. (1997). Global biodiversity and life-history evolution in prosobranch gastropods. Iberus 16, 73–79.

Oliverio, M., and Mariottini, P. (2001). A molecular framework for the phylogeny of Coralliophila and related muricoids. The Journal of Molluscan Studies 67, 215–224.
A molecular framework for the phylogeny of Coralliophila and related muricoids.Crossref | GoogleScholarGoogle Scholar |

Palumbi, S. R., Martin, A., Romano, S., McMillan, W. O., Stice, L., and Grabowski, G. (1991). ‘A Simple Fool’s Guide to PCR.’ (University of Hawaii Press: Honolulu, HI, USA.)

Pinna, G., and Spezia, L. (1978). Catalogo dei Tipi del Museo Civico di Storia Naturale di Milano. V. I Tipi dei Gasteropodi fossili. Atti della Società Italiana di Scienze Naturali e Museo Civico Storia Naturale, Milano 119, 125–180.

Powell, A. W. B. (1966). The molluscan families Speightiidae and Turridae. An evaluation of the valid taxa both recent and fossil, with lists of characteristic species. Bulletin of the Auckland Institute and Museum 5, 1–184.

Prkić, J., Giannuzzi-Savelli, R., Pusateri, F., Russini, V., Fassio, G., and Oliverio, M. (in press). Three new species of Raphitoma (Mollusca, Gastropoda, Raphitomidae) from the Croatian waters (NE Adriatic Sea). Zoosystema , .
Three new species of Raphitoma (Mollusca, Gastropoda, Raphitomidae) from the Croatian waters (NE Adriatic Sea).Crossref | GoogleScholarGoogle Scholar |

Prowse, T. A. A., Sewell, M. A., and Byrne, M. (2008). Fuels for development: evolution of maternal provisioning in asterinid sea stars. Marine Biology 153, 337–349.
Fuels for development: evolution of maternal provisioning in asterinid sea stars.Crossref | GoogleScholarGoogle Scholar |

Puillandre, N., Baylac, M., Boisselier, M., Cruaud, C., and Samadi, S. (2009). An integrative approach to species delimitation in Benthomangelia (Mollusca: Conoidea). Biological Journal of the Linnean Society. Linnean Society of London 96, 696–708.
An integrative approach to species delimitation in Benthomangelia (Mollusca: Conoidea).Crossref | GoogleScholarGoogle Scholar |

Puillandre, N., Modica, M. V., Zhang, Y., Sirovich, L., and Boisselier, M. (2012a). Large-scale species delimitation method for hyperdiverse groups. Molecular Ecology 21, 2671–2691.
Large-scale species delimitation method for hyperdiverse groups.Crossref | GoogleScholarGoogle Scholar | 22494453PubMed |

Puillandre, N., Lambert, A., Brouillet, S., and Achaz, G. (2012b). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21, 1864–1877.
ABGD, Automatic Barcode Gap Discovery for primary species delimitation.Crossref | GoogleScholarGoogle Scholar | 21883587PubMed |

Puillandre, N., Stöcklin, R., Favreau, P., Bianchi, E., Perret, F., Rivasseau, A., Limpalaër, L., Monnier, E., and Bouchet, P. (2014). When everything converges: integrative taxonomy with shell, DNA and venomic data reveals Conus conco, a new species of cone snails (Gastropoda: Conoidea). Molecular Phylogenetics and Evolution 80, 186–192.
When everything converges: integrative taxonomy with shell, DNA and venomic data reveals Conus conco, a new species of cone snails (Gastropoda: Conoidea).Crossref | GoogleScholarGoogle Scholar | 25132129PubMed |

Puillandre, N., Stöcklin, R., Favreau, P., Bianchi, E., Perret, F., Rivasseau, A., Limpalaër, L., Monnier, E., and Bouchet, P. (2015). Corrigendum to ‘When everything converges: integrative taxonomy with shell, DNA and venomic data reveals Conus conco, a new species of cone snails (Gastropoda: Conoidea)’ [Mol. Phylogenet. Evol. 80 (2014) 186–192]. Molecular Phylogenetics and Evolution 82, 341–342.
Corrigendum to ‘When everything converges: integrative taxonomy with shell, DNA and venomic data reveals Conus conco, a new species of cone snails (Gastropoda: Conoidea)’ [Mol. Phylogenet. Evol. 80 (2014) 186–192].Crossref | GoogleScholarGoogle Scholar |

Pusateri, F., Giannuzzi-Savelli, R., and Oliverio, M. (2012). A revision of the Mediterranean Raphitomidae. 1. On the sibling species Raphitoma contigua Monterosato, 1884 and Raphitoma spadiana n. sp. (Gastropoda, Conoidea). Iberus 30, 41–52.

Pusateri, F., Giannuzzi-Savelli, R., and Oliverio, M. (2013). A revision of the Mediterranean Raphitomidae. 2. On the sibling species Raphitoma lineolata (B.D.D., 1883) and Raphitoma smriglioi n. sp. Iberus 31, 11–20.

Pusateri, F., Giannuzzi-Savelli, R., and Bartolini, S. (2016). A revision of the Mediterranean Raphitomidae. 3. On the Raphitoma pupoides (Monterosato, 1884) complex, with the description of a new species (Mollusca Gastropoda). Biodiversity Journal 7, 103–115.

Pusateri, F., Giannuzzi-Savelli, R., and Bartolini, S. (2018). A revision of the Mediterranean Raphitomidae (Gastropoda Conoidea). 6. On the Raphitoma corbis (Potiez et Michaud, 1838). Biodiversity Journal 9, 217–225.
A revision of the Mediterranean Raphitomidae (Gastropoda Conoidea). 6. On the Raphitoma corbis (Potiez et Michaud, 1838).Crossref | GoogleScholarGoogle Scholar |

Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3, 217–223.
phytools: an R package for phylogenetic comparative biology (and other things).Crossref | GoogleScholarGoogle Scholar |

Ritchie, A. M., Lo, N., and Ho, S. Y. (2016). The impact of the tree prior on molecular dating of data sets containing a mixture of inter-and intraspecies sampling. Systematic Biology 66, 413–425.
The impact of the tree prior on molecular dating of data sets containing a mixture of inter-and intraspecies sampling.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |

Russini, V., Fassio, G., Modica, M. V., de Maintenon, M. J., and Oliverio, M. (2017). An assessment of the genus Columbella Lamarck, 1799 (Gastropoda: Columbellidae) from eastern Atlantic. Zoosystema 39, 197–212.
An assessment of the genus Columbella Lamarck, 1799 (Gastropoda: Columbellidae) from eastern Atlantic.Crossref | GoogleScholarGoogle Scholar |

Shuto, T. (1974). Larval ecology of prosobranch gastropods and its bearing on biogeography and paleontology. Lethaia 7, 239–256.
Larval ecology of prosobranch gastropods and its bearing on biogeography and paleontology.Crossref | GoogleScholarGoogle Scholar |

Smith, H. L., and Gibson, G. D. (1999). Nurse egg origin in the polychaete Boccardia proboscidea (Spionidae). Invertebrate Reproduction & Development 35, 177–185.
Nurse egg origin in the polychaete Boccardia proboscidea (Spionidae).Crossref | GoogleScholarGoogle Scholar |

Smriglio, C., Mariottini, P., and Gravina, F. (1987). Molluschi del mar Tirreno centrale: segnalazione di alcuni turridi provenienti da una biocenosi a coralli bianchi. Contributo II. Bollettino Malacologico 23, 381–390.

Strathmann, R. R. (1978a). The evolution and loss of feeding larval stages of marine invertebrates. Evolution 32, 894–906.
The evolution and loss of feeding larval stages of marine invertebrates.Crossref | GoogleScholarGoogle Scholar | 28567936PubMed |

Strathmann, R. R. (1978b). Progressive vacating of adaptive types during the Phanerozoic. Evolution 32, 907–914.
Progressive vacating of adaptive types during the Phanerozoic.Crossref | GoogleScholarGoogle Scholar | 28567931PubMed |

Strathmann, R. R. (1985). Feeding and nonfeeding larval development and life-history evolution in marine invertebrates. Annual Review of Ecology and Systematics 16, 339–361.
Feeding and nonfeeding larval development and life-history evolution in marine invertebrates.Crossref | GoogleScholarGoogle Scholar |

Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., and Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1. 10. Virus Evolution 4, 1–5.
Bayesian phylogenetic and phylodynamic data integration using BEAST 1. 10.Crossref | GoogleScholarGoogle Scholar |

Thunell, R. C., and Douglas, F. W. (1983). Paleotemperature and paleosalinity history of the eastern Mediterranean Sea during the Late Quaternary. Paleogeogeography, Paleoclimatology, Paleoecology 44, 23–39.
Paleotemperature and paleosalinity history of the eastern Mediterranean Sea during the Late Quaternary.Crossref | GoogleScholarGoogle Scholar |

Thunell, R. C., Douglas, F. W., and Belyea, P. R. (1984). Anoxic events in the Mediterranean Sea in relation to the evolution of the Late Neogene climates. Marine Geology 59, 105–134.
Anoxic events in the Mediterranean Sea in relation to the evolution of the Late Neogene climates.Crossref | GoogleScholarGoogle Scholar |

Vance, R. R. (1973). More on reproductive strategies in marine benthic invertebrates. American Naturalist 107, 353–361.
More on reproductive strategies in marine benthic invertebrates.Crossref | GoogleScholarGoogle Scholar |

Vendetti, J. E., Trowbridge, C. D., and Krug, P. J. (2012). Poecilogony and population genetic structure in Elysia pusilla (Heterobranchia: Sacoglossa), and reproductive data for five sacoglossans that express dimorphisms in larval development. Integrative and Comparative Biology 52, 138–150.
Poecilogony and population genetic structure in Elysia pusilla (Heterobranchia: Sacoglossa), and reproductive data for five sacoglossans that express dimorphisms in larval development.Crossref | GoogleScholarGoogle Scholar | 22659202PubMed |

Verduin, A. (1977). On a remarkable dimorphism of the apices of sympatric closely related marine gastropod species. Basteria 41, 91–95.

Yeates, D. K., Seago, A., Nelson, L., Cameron, S. L., Joseph, L., and Trueman, J. W H. (2011). Integrative taxonomy, or iterative taxonomy? Systematic Entomology 36, 209–217.
Integrative taxonomy, or iterative taxonomy?Crossref | GoogleScholarGoogle Scholar |