Hidden in plain sight: Tripneustes kermadecensis (Echinodermata: Echinoidea) is a junior synonym of the eastern Australian sea urchin Evechinus australiae described in 1878
Emily McLaren A * , Omri Bronstein B C , Andreas Kroh D , Viola Winkler E , Ashley Miskelly F , Brigitte Sommer A and Maria Byrne AA
B
C
D
E
F
Abstract
Accurate taxonomy and descriptions of species are key to understanding biodiversity. The echinoid genus Tripneustes is an ecologically and commercially important taxon that includes the tropical Tripneustes gratilla gratilla and the recently described T. kermadecensis from Australia and New Zealand. While examining the Australian Museum collections to clarify the distributions of these two species in eastern Australia we found potential senior type material for T. kermadecensis. These specimens from Sydney Harbour were originally described in 1878 as Evechinus australiae by Tenison-Woods but neither illustrated nor redescribed in any subsequent report. We undertook molecular and morphological analysis of these specimens to determine whether T. kermadecensis and E. australiae represent two distinct taxa or not. This included micro-computed tomography, quantification of test traits and molecular genetic analysis. The COI sequence and morphology of Evechinus australiae matched that of Tripneustes kermadecensis. As such, T. kermadecensis is a junior synonym of Evechinus australiae. The correct designation of this taxon is therefore Tripneustes australiae (Tenison-Woods, 1878).
ZooBank: urn:lsid:zoobank.org:pub:9B9E685C‐9C1C‐4645‐A799‐D97969BAA033
Keywords: Australia, Echinodermata, Echinoidea, integrative taxonomy, molecular taxonomy, morphology, taxonomy, Tripneustes.
References
Alcoverro T, Mariani S (2002) Effects of sea urchin grazing on seagrass (Thalassodendron ciliatum) beds of a Kenyan lagoon. Marine Ecology Progress Series 226, 255-263.
| Crossref | Google Scholar |
Arndt A, Marquez C, Lambert P, Smith MJ (1996) Molecular phylogeny of Eastern Pacific sea cucumbers (Echinodermata: Holothuroidea) based on mitochondrial DNA sequence. Molecular Phylogenetics and Evolution 6, 425-437.
| Crossref | Google Scholar | PubMed |
Bronstein O, Kroh A (2019) The first mitochondrial genome of the model echinoid Lytechinus variegatus and insights into Odontophoran phylogenetics. Genomics 111(4), 710-718.
| Crossref | Google Scholar | PubMed |
Bronstein O, Kroh A, Haring E (2016) Do genes lie? Mitochondrial capture masks the Red Sea collector urchin’s true identity (Echinodermata: Echinoidea: Tripneustes). Molecular Phylogenetics and Evolution 104, 1-13.
| Crossref | Google Scholar | PubMed |
Bronstein O, Kroh A, Tautscher B, Liggins L, Haring E (2017) Cryptic speciation in pan-tropical sea urchins: a case study of an edge-of-range population of Tripneustes from the Kermadec Islands. Scientific Reports 7, 5948.
| Crossref | Google Scholar | PubMed |
Bronstein O, Kroh A, Miskelly AD, Smith SDA, Dworjanyn SA, Mos B, Byrne M (2019) Implications of range overlap in the commercially important pan-tropical sea urchin genus Tripneustes (Echinoidea: Toxopneustidae). Marine Biology 166, 34.
| Crossref | Google Scholar |
Byrne M, Gall ML, Campbell H, Lamare MD, Holmes SP (2022) Staying in place and moving in space: contrasting larval thermal sensitivity explains distributional changes of sympatric sea urchin species to habitat warming. Global Change Biology 28, 3040-3053.
| Crossref | Google Scholar | PubMed |
Castro LC, Cetina‐Heredia P, Roughan M, Dworjanyn S, Thibaut L, Chamberlain MA, Feng M, Vergés A (2020) Combined mechanistic modelling predicts changes in species distribution and increased co‐occurrence of a tropical urchin herbivore and a habitat‐forming temperate kelp. Diversity and Distributions 26, 1211-1226.
| Crossref | Google Scholar |
Chernomor O, von Haeseler A, Minh BQ (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65, 997-1008.
| Crossref | Google Scholar | PubMed |
Farquhar H (1894) Notes on New Zealand echinoderms. Transactions of the New Zealand Institute 27, 194-208 Available at https://www.biodiversitylibrary.org/page/3300653.
| Google Scholar |
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3(5), 294-299.
| Google Scholar | PubMed |
Gervais CR, Champion C, Pecl GT (2021) Species on the move around the Australian coastline: A continental‐scale review of climate‐driven species redistribution in marine systems. Global Change Biology 27, 3200-3217.
| Crossref | Google Scholar | PubMed |
Kroh A (2020) Chapter 1. Phylogeny and classification of echinoids. In ‘Sea Urchins: Biology and Ecology’, 4th edn. (Ed. JM Lawrence) pp. 1–17. (Elsevier) 10.1016/B978-0-12-819570-3.00001-9
Lawrence JM, Agatsuma Y (2020) Chapter 37 – Tripneustes. In ‘Developments in Aquaculture and Fisheries Science’. (Ed. JM Lawrence) Vol. 43. pp. 681–703. (Elsevier) 10.1016/B978-0-12-819570-3.00037-8
Leigh JW, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6, 1110-1116.
| Crossref | Google Scholar |
Lessios HA, Kane J, Robertson DR (2003) Phylogeography of the pantropical sea urchin Tripneustes: contrasting patterns of population structure between oceans. Evolution 57, 2026-2036.
| Crossref | Google Scholar | PubMed |
Meissner M (1891) Bericht über die wissenschaftlichen Leistungen in der Naturgeschichte der Echinodermen während des Jahres 1890. Archiv für Naturgeschichte 57(2), 155-170 Available at https://www.biodiversitylibrary.org/page/6377920 [In German].
| Google Scholar |
Mooi R, Kroh A, Srivastava DK (2014) Phylogenetic re-evaluation of fossil and extant micro-echinoids with revision of Tridium, Cyamidia, and Lenicyamidia (Echinoidea: Clypeasteroida). Zootaxa 3857(4), 501-526.
| Crossref | Google Scholar | PubMed |
Moreira‐Saporiti A, Hoeijmakers D, Reuter H, Msuya FE, Gese K, Teichberg M (2023) Bottom‐up and top‐down control of seagrass overgrazing by the sea urchin Tripneustes gratilla. Marine Ecology 44, e12734.
| Crossref | Google Scholar |
Mos B, Dworjanyn SA (2019) Ready to harvest? Spine colour predicts gonad index and gonad colour rating of a commercially important sea urchin. Aquaculture 505, 510-516.
| Crossref | Google Scholar |
Neilson BJ, Wall CB, Mancini FT, Gewecke CA (2018) Herbivore biocontrol and manual removal successfully reduce invasive macroalgae on coral reefs. PeerJ 6, e5332.
| Crossref | Google Scholar | PubMed |
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution 32, 268-274.
| Crossref | Google Scholar | PubMed |
Ridgway KR, Godfrey JS (1997) Seasonal cycle of the East Australian Current. Journal of Geophysical Research: Oceans 102, 22921-22936.
| Crossref | Google Scholar |
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MRBAYES 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539-542.
| Crossref | Google Scholar | PubMed |
Schumacher CF (1817) ‘Essai d’un nouveau système des habitations des vers testacés.’ (Schultz: Copenghagen, Denmark) Available at http://www.biodiversitylibrary.org/item/81329 [In French and Latin]
Sonnenholzner-Varas JI, Touron N, Orrala MMP (2018) Breeding, larval development, and growth of juveniles of the edible sea urchin Tripneustes depressus: a new target species for aquaculture in Ecuador. Aquaculture 496, 134-145.
| Crossref | Google Scholar |
Stokes RB, Kroh A (2022) Attribution of the taxon name Echinoidea to Schumacher, 1817. Zootaxa 5182(2), 165-174.
| Crossref | Google Scholar | PubMed |
Suthers IM, Young JW, Baird ME, Roughan M, Everett JD, Brassington GB, Byrne M, Condie SA, Hartog JR, Hassler CS, Hobday AJ, Holbrook NJ, Malcolm HA, Oke PR, Thompson PA, Ridgway K (2011) The strengthening East Australian Current, its eddies and biological effects — an introduction and overview. Deep Sea Research Part II: Topical Studies in Oceanography 58, 538-546.
| Crossref | Google Scholar |
Tenison-Woods JE (1878) The echini of Australia. Proceedings of the Linnean Society of New South Wales 2, 145-176 Available at https://www.biodiversitylibrary.org/page/3341652.
| Google Scholar |
Thomas LJ, Liggins L, Banks SC, Beheregaray LB, Liddy M, McCulloch GA, Waters JM, Carter L, Byrne M, Cumming RA, Lamare MD (2021) The population genetic structure of the urchin Centrostephanus rodgersii in New Zealand with links to Australia. Marine Biology 168, 138.
| Crossref | Google Scholar |
Valentine JP, Edgar GJ (2010) Impacts of a population outbreak of the urchin Tripneustes gratilla amongst Lord Howe Island coral communities. Coral Reefs 29, 399-410.
| Crossref | Google Scholar |
Vergés A, Steinberg PD, Hay ME, Poore AGB, Campbell AH, Ballesteros E, Heck KL, Booth DJ, Coleman MA, Feary DA, Figueira W, Langlois T, Marzinelli EM, Mizerek T, Mumby PJ, Nakamura Y, Roughan M, van Sebille E, Gupta AS, Smale DA, Tomas F, Wernberg T, Wilson SK (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proceedings of the Royal Society B: Biological Sciences 281, 20140846.
| Crossref | Google Scholar | PubMed |
Whitelegge T (1889) List of the marine and fresh-water invertebrate fauna of Port Jackson and the neighbourhood. Journal and Proceedings of the Royal Society of New South Wales 23(2), 163-323.
| Crossref | Google Scholar |
Zigler KS, Lessios HA (2003) Evolution of bindin in the pantropical sea urchin Tripneustes: comparisons to bindin of other genera. Molecular Biology and Evolution 20, 220-231.
| Crossref | Google Scholar | PubMed |