Response to the Concept paper: ‘What is recalcitrant soil organic matter?’ by Markus Kleber
Margit von Lützow A B and Ingrid Kögel-Knabner AA Lehrstuhl für Bodenkunde, Technische Universität München, Wissenschaftszentrum Weihenstephan, D-85350 Freising, Germany.
B Corresponding author. Email: luetzow@wzw.tum.de
Environmental Chemistry 7(4) 333-335 https://doi.org/10.1071/EN10085
Submitted: 17 June 2010 Accepted: 28 July 2010 Published: 20 August 2010
[1]
M. Kleber ,
What is recalcitrant soil organic matter?
Environ. Chem. 2010
, 7, 320.
| Crossref | GoogleScholarGoogle Scholar |
[2]
B. Marschner ,
S. Brodowski ,
A. Dreves ,
G. Gleixner ,
P.-M. Grootes ,
U. Hamer ,
A. Heim ,
G. Jandl ,
et al. How relevant is recalcitrance for the stabilization of organic matter in soils?
J. Plant Nutr. Soil Sci. 2008
, 171, 91.
| Crossref | GoogleScholarGoogle Scholar |
[3]
M. von Lützow ,
I. Kögel-Knabner ,
B. Ludwig ,
E. Matzner ,
H. Flessa ,
K. Ekschmitt ,
G. Guggenberger ,
B. Marschner ,
et al. Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model.
J. Plant Nutr. Soil Sci. 2008
, 171, 111.
| Crossref | GoogleScholarGoogle Scholar |
[4]
P. Sollins ,
P. Homann ,
B. A. Caldwell ,
Stabilisation and destabilisation of soil organic matter: mechanisms and controls.
Geoderma 1996
, 74, 65.
| Crossref | GoogleScholarGoogle Scholar |
[5]
M. von Lützow ,
I. Kögel-Knabner ,
Temperature sensitivity of soil organic matter decomposition – what do we know?
Biol. Fertil. Soils 2009
, 46, 1.
| Crossref | GoogleScholarGoogle Scholar |
[6]
M. von Lützow ,
I. Kögel-Knabner ,
K. Ekschmitt ,
E. Matzner ,
G. Guggenberger ,
B. Marschner ,
H. Flessa ,
Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions – a review.
Eur. J. Soil Sci. 2006
, 57, 426.
| Crossref | GoogleScholarGoogle Scholar |
[7]
S. Derenne ,
C. Largeau ,
A review of some important families of refractory macromolecules: composition, origin, and fate in soils and sediments.
Soil Sci. 2001
, 166, 833.
| Crossref | GoogleScholarGoogle Scholar |
[8]
M. von Lützow ,
I. Kögel-Knabner ,
K. Ekschmitt ,
H. Flessa ,
G. Guggenberger ,
E. Matzner ,
B. Marschner ,
SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms – a review.
Soil Biol. Biochem. 2007
, 39, 2183.
| Crossref | GoogleScholarGoogle Scholar |
[9]
[10]
J. M. Melillo ,
J. D. Aber ,
A. E. Linkins ,
A. Ricca ,
B. Fry ,
K. J. Nadelhoffer ,
Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter.
Plant Soil 1989
, 115, 189.
| Crossref | GoogleScholarGoogle Scholar |
[11]
J. D. Aber ,
J. M. Mellino ,
C. A. McClaugherty ,
Predicting long-term patterns of mass loss, nitrogen dynamics and soil organic matter formation from initial fine litter chemisty in temperate forest ecosystems.
Can. J. Bot. 1990
, 68, 2201.
| Crossref | GoogleScholarGoogle Scholar |
[12]
[13]
G. Minderman ,
Addition decomposition and accumulation of organic matter in forests.
J. Ecol. 1968
, 56, 355.
| Crossref | GoogleScholarGoogle Scholar |
[14]
[15]
K. Ekschmitt ,
M. Liu ,
S. Vetter ,
O. Fox ,
V. Wolters ,
Strategies used by soil biota to overcome soil organic matter stability – why is dead organic matter left over in the soil?
Geoderma 2005
, 128, 167.
| Crossref | GoogleScholarGoogle Scholar |
[16]
E. M. Driebe ,
T. G. Whitham ,
Cottonwood hybridization affects tannin and nitrogen content of leaf litter and alters decomposition.
Oecologia 2000
, 123, 99.
| Crossref | GoogleScholarGoogle Scholar |
[17]
S. E. Hobbie ,
P. B. Reich ,
J. Oleksyn ,
M. Ogdahl ,
R. Zytkowiak ,
C. Hale ,
P. Karolewski ,
Tree species effects on decomposition and forest floor dynamics in a common garden.
Ecology 2006
, 87, 2288.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[18]
T. E. C. Kraus ,
R. A. Dahlgren ,
R. J. Zasoski ,
Tannins in nutrient dynamics of forest ecosystems – a review.
Plant Soil 2003
, 256, 41.
| Crossref | GoogleScholarGoogle Scholar |
[19]
K. Kalbitz ,
J. Schmerwitz ,
D. Schwesig ,
E. Matzner ,
Biodegradation of soil-derived dissolved organic matter as related to its properties.
Geoderma 2003
, 113, 273.
| Crossref | GoogleScholarGoogle Scholar |
[20]
M. Riederer ,
K. Matzke ,
F. Ziegler ,
I. Kögel-Knabner ,
Occurence, distribution and fate of the lipid plant biopolymers cutin and suberin in temperate forest soils.
Org. Geochem. 1993
, 20, 1063.
| Crossref | GoogleScholarGoogle Scholar |
[21]
A. Scalbert ,
Antimicrobial properties of tannins.
Phytochemistry 1991
, 30, 3875.
| Crossref | GoogleScholarGoogle Scholar |
[22]
I. Kögel-Knabner ,
G. Guggenberger ,
M. Kleber ,
E. Kandeler ,
K. Kalbitz ,
S. Scheu ,
K. Eusterhues ,
P. Leinweber ,
Organo–mineral associations in temperate soils: integrating biology, mineralogy and organic matter chemistry.
J. Plant Nutr. Soil Sci. 2008
, 171, 61.
| Crossref | GoogleScholarGoogle Scholar |
[23]
S. Spielvogel ,
J. Prietzel ,
I. Kögel-Knabner ,
Soil organic matter stabilization in acidic forest soils is preferential and soil type-specific.
Eur. J. Soil Sci. 2008
, 59, 674.
| Crossref | GoogleScholarGoogle Scholar |
[24]
S. Manzoni ,
R. B. Jackson ,
J. A. Trofymow ,
A. Porporato ,
The global stoichiometry of litter nitrogen mineralization.
Science 2008
, 321, 684.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[25]
W. Parton ,
W. L. Silver ,
I. C. Burke ,
L. Grassens ,
M. E. Harmon ,
W. S. Currie ,
J. Y. King ,
E. C. Adair ,
et al. Global-scale similarities in nitrogen release patterns during long-term decomposition.
Science 2007
, 315, 361.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[26]
J. M. Craine ,
C. Morrow ,
N. Fierer ,
Microbial nitrogen limitation increases decomposition.
Ecology 2007
, 88, 2105.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[27]
W. C. Hockaday ,
C. A. Masiello ,
J. T. Randerson ,
R. J. Smernik ,
J. A. Baldock ,
O. A. Chadwick ,
J. W. Harden ,
Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance.
J. Geophys. Res. 2009
, 114, G02014.
| Crossref | GoogleScholarGoogle Scholar |
[28]
J. T. Randerson ,
C. A. Masiello ,
C. J. Still ,
T. Rahn ,
H. Poorter ,
C. B. Field ,
Is carbon within the global terrestrial biosphere becoming more oxidized? Implications for trends in atmospheric O2.
Glob. Change Biol. 2006
, 12, 260.
| Crossref | GoogleScholarGoogle Scholar |
[29]
P. G. Hatcher ,
E. C. Spiker ,
N. M. Szeverenyi ,
G. E. Maciel ,
Selective preservation and origin of petroleum-forming aquatic kerogen.
Nature 1983
, 305, 498.
| Crossref | GoogleScholarGoogle Scholar |
[30]
[31]
W. Zech ,
N. Senesi ,
G. Guggenberger ,
K. Kaiser ,
J. Lehmann ,
T. M. Miano ,
A. Miltner ,
G. Schroth ,
Factors controlling humification and mineralization of soil organic matter in the tropics.
Geoderma 1997
, 79, 117.
| Crossref | GoogleScholarGoogle Scholar |
[32]
G. Gleixner ,
N. Poirier ,
R. Bol ,
J. Balesdent ,
Molecular dynamics of organic matter in a cultivated soil.
Org. Geochem. 2002
, 33, 357.
| Crossref | GoogleScholarGoogle Scholar |
[33]
C. Rumpel ,
K. Eusterhues ,
I. Kögel-Knabner ,
Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils.
Soil Biol. Biochem. 2004
, 36, 177.
| Crossref | GoogleScholarGoogle Scholar |