Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Response to the Concept paper: ‘What is recalcitrant soil organic matter?’ by Markus Kleber

Margit von Lützow A B and Ingrid Kögel-Knabner A
+ Author Affiliations
- Author Affiliations

A Lehrstuhl für Bodenkunde, Technische Universität München, Wissenschaftszentrum Weihenstephan, D-85350 Freising, Germany.

B Corresponding author. Email: luetzow@wzw.tum.de

Environmental Chemistry 7(4) 333-335 https://doi.org/10.1071/EN10085
Submitted: 17 June 2010  Accepted: 28 July 2010   Published: 20 August 2010


References


[1]   M. Kleber , What is recalcitrant soil organic matter? Environ. Chem. 2010 , 7,  320.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[2]   B. Marschner , S. Brodowski , A. Dreves , G. Gleixner , P.-M. Grootes , U. Hamer , A. Heim , G. Jandl , et al. How relevant is recalcitrance for the stabilization of organic matter in soils? J. Plant Nutr. Soil Sci. 2008 , 171,  91.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[3]   M. von Lützow , I. Kögel-Knabner , B. Ludwig , E. Matzner , H. Flessa , K. Ekschmitt , G. Guggenberger , B. Marschner , et al. Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model. J. Plant Nutr. Soil Sci. 2008 , 171,  111.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   P. Sollins , P. Homann , B. A. Caldwell , Stabilisation and destabilisation of soil organic matter: mechanisms and controls. Geoderma 1996 , 74,  65.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[5]   M. von Lützow , I. Kögel-Knabner , Temperature sensitivity of soil organic matter decomposition – what do we know? Biol. Fertil. Soils 2009 , 46,  1.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[6]   M. von Lützow , I. Kögel-Knabner , K. Ekschmitt , E. Matzner , G. Guggenberger , B. Marschner , H. Flessa , Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions – a review. Eur. J. Soil Sci. 2006 , 57,  426.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[7]   S. Derenne , C. Largeau , A review of some important families of refractory macromolecules: composition, origin, and fate in soils and sediments. Soil Sci. 2001 , 166,  833.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   M. von Lützow , I. Kögel-Knabner , K. Ekschmitt , H. Flessa , G. Guggenberger , E. Matzner , B. Marschner , SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms – a review. Soil Biol. Biochem. 2007 , 39,  2183.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   Swift M. J., Heal O. W., Anderson J. M., The influence of resource quality on decomposition processes, in Studies in Ecology (Eds D. J. Anderson, P. Greig-Smith, F. A. Pitelka) 1979, vol. 5, pp. 118–166 (University of California Press: Los Angeles, CA).

[10]   J. M. Melillo , J. D. Aber , A. E. Linkins , A. Ricca , B. Fry , K. J. Nadelhoffer , Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant Soil 1989 , 115,  189.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[11]   J. D. Aber , J. M. Mellino , C. A. McClaugherty , Predicting long-term patterns of mass loss, nitrogen dynamics and soil organic matter formation from initial fine litter chemisty in temperate forest ecosystems. Can. J. Bot. 1990 , 68,  2201.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   Waksman S. A., Decomposition of plant and animal residues in soils and in composts, in Soil Microbiology 1952, pp. 95–123 (Wiley: New York).

[13]   G. Minderman , Addition decomposition and accumulation of organic matter in forests. J. Ecol. 1968 , 56,  355.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[14]   Dickinson C. H., Pugh G. J. F., Biology of Plant Litter Decomposition 1974, volumes 1 and 2 (Academic Press: New York).

[15]   K. Ekschmitt , M. Liu , S. Vetter , O. Fox , V. Wolters , Strategies used by soil biota to overcome soil organic matter stability – why is dead organic matter left over in the soil? Geoderma 2005 , 128,  167.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[16]   E. M. Driebe , T. G. Whitham , Cottonwood hybridization affects tannin and nitrogen content of leaf litter and alters decomposition. Oecologia 2000 , 123,  99.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   S. E. Hobbie , P. B. Reich , J. Oleksyn , M. Ogdahl , R. Zytkowiak , C. Hale , P. Karolewski , Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 2006 , 87,  2288.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[18]   T. E. C. Kraus , R. A. Dahlgren , R. J. Zasoski , Tannins in nutrient dynamics of forest ecosystems – a review. Plant Soil 2003 , 256,  41.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   K. Kalbitz , J. Schmerwitz , D. Schwesig , E. Matzner , Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 2003 , 113,  273.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   M. Riederer , K. Matzke , F. Ziegler , I. Kögel-Knabner , Occurence, distribution and fate of the lipid plant biopolymers cutin and suberin in temperate forest soils. Org. Geochem. 1993 , 20,  1063.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[21]   A. Scalbert , Antimicrobial properties of tannins. Phytochemistry 1991 , 30,  3875.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[22]   I. Kögel-Knabner , G. Guggenberger , M. Kleber , E. Kandeler , K. Kalbitz , S. Scheu , K. Eusterhues , P. Leinweber , Organo–mineral associations in temperate soils: integrating biology, mineralogy and organic matter chemistry. J. Plant Nutr. Soil Sci. 2008 , 171,  61.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[23]   S. Spielvogel , J. Prietzel , I. Kögel-Knabner , Soil organic matter stabilization in acidic forest soils is preferential and soil type-specific. Eur. J. Soil Sci. 2008 , 59,  674.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[24]   S. Manzoni , R. B. Jackson , J. A. Trofymow , A. Porporato , The global stoichiometry of litter nitrogen mineralization. Science 2008 , 321,  684.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[25]   W. Parton , W. L. Silver , I. C. Burke , L. Grassens , M. E. Harmon , W. S. Currie , J. Y. King , E. C. Adair , et al. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 2007 , 315,  361.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[26]   J. M. Craine , C. Morrow , N. Fierer , Microbial nitrogen limitation increases decomposition. Ecology 2007 , 88,  2105.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[27]   W. C. Hockaday , C. A. Masiello , J. T. Randerson , R. J. Smernik , J. A. Baldock , O. A. Chadwick , J. W. Harden , Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance. J. Geophys. Res. 2009 , 114,  G02014.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   J. T. Randerson , C. A. Masiello , C. J. Still , T. Rahn , H. Poorter , C. B. Field , Is carbon within the global terrestrial biosphere becoming more oxidized? Implications for trends in atmospheric O2. Glob. Change Biol. 2006 , 12,  260.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[29]   P. G. Hatcher , E. C. Spiker , N. M. Szeverenyi , G. E. Maciel , Selective preservation and origin of petroleum-forming aquatic kerogen. Nature 1983 , 305,  498.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[30]   Baldock J. A., Preston C. M., Chemistry of carbon decomposition processes in forests as revealed by solid-state carbon-13 nuclear resonance, in Carbon Forms and Functions in Forest Soils (Eds W. W. McFee, J. M. Kelly) 1996, pp. 89–117 (Soil Science Society of America: Madison, WI).

[31]   W. Zech , N. Senesi , G. Guggenberger , K. Kaiser , J. Lehmann , T. M. Miano , A. Miltner , G. Schroth , Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 1997 , 79,  117.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[32]   G. Gleixner , N. Poirier , R. Bol , J. Balesdent , Molecular dynamics of organic matter in a cultivated soil. Org. Geochem. 2002 , 33,  357.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[33]   C. Rumpel , K. Eusterhues , I. Kögel-Knabner , Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils. Soil Biol. Biochem. 2004 , 36,  177.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1