Isolation and purification treatments change the metal-binding properties of humic acids: effect of HF/HCl treatment
Wander G. Botero A H , Michael Pineau B , Noémie Janot C D , Rute F. Domingos E , José Mariano F , Luciana S. Rocha B , Jan E. Groenenberg C D G , Marc F. Benedetti E and José P. Pinheiro C DA Federal University of Alagoas (UFAL), Campus Arapiraca, 57309-005, Arapiraca, AL, Brazil.
B Department of Chemistry and Biochemistry/Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
C CNRS, LIEC, UMR7360, 15 Avenue du Charmois, Vandœuvre-lès-Nancy F-54501, France.
D Université de Lorraine, LIEC, UMR7360, 15 Avenue du Charmois, Vandœuvre-lès-Nancy F-54501, France.
E Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, UMR CNRS 7154, 75205 Paris Cedex 05, France.
F Department of Physics and CeFEMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal.
G Department of Soil Quality, Wageningen University and Research, PO Box 47, 6700 AA Wageningen, The Netherlands.
H Corresponding author. Email: wanderbotero@gmail.com
Environmental Chemistry 14(7) 417-424 https://doi.org/10.1071/EN17129
Submitted: 12 July 2017 Accepted: 8 September 2017 Published: 31 January 2018
Environmental context. Studying the mechanism of binding between metals and natural organic matter is fundamental to understanding the transport and availability of these contaminants in the environment. The influence of sample treatment on the purification of organic matter showed significant differences in the interaction with metals. The results will contribute to improved modelling of metal binding to organic matter in soils, thereby providing a basis for a more realistic risk assessment.
Abstract. We studied the changes in metal binding characteristics of extracted humic acids induced by HF/HCl treatment followed by dialysis, i.e. the last step of the International Humic Substances Society (IHSS) extraction protocol. We performed metal binding experiments with both the alkaline-extracted material (AE) and the fully purified (FP) humic acid using the electrochemical stripping technique (AGNES) and modelled the results using the NICA-Donnan model. The results showed an increase of free Zn, Cd and Pb concentrations of ~1 order of magnitude for the AE compared with the FP. These differences may be mostly explained by the different carbon content (51.3 % FP and 36.5 % AE) associated with an AE/FP carboxyl ratio of 0.5. Simulations using the NICA-Donnan model showed that halving the amount of carboxylic groups (Qmax,1) for the FP reduced this difference to 0.25 log units for Cd and Zn and to 0.15 log unit for Pb. There is a clear need for further research on the differences between purified v. less-disturbed natural organic material, which will contribute to improved modelling of metal binding to organic matter in soils, hence providing a basis for a more realistic risk assessment.
Additional keywords: alkaline-extracted material, humic acid.
References
[1] J. E. Groenenberg, S. Lofts, The use of assemblage models to describe trace element partitioning, speciation and fate: a review Environ. Toxicol. Chem. 2014, 33, 2181.| The use of assemblage models to describe trace element partitioning, speciation and fate: a reviewCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFKntrjP&md5=6197f7018e7c9ec6a9e4b9c1c77cd81aCAS |
[2] L. T. C. Bonten, J. E. Groenenberg, H. Meesenburg, W. De Vries, Using advanced surface complexation models for modelling soil chemistry under forests. The Solling case Environ. Pollut. 2011, 159, 2831.
| Using advanced surface complexation models for modelling soil chemistry under forests. The Solling caseCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFehtLrN&md5=741d1b4151a4c0b96073eed28de6e061CAS |
[3] E. Tipping, J. J. Rothwell, L. Shotbolt, A. J. Lawlor, Dynamic modelling of atmospherically deposited Ni, Cu, Zn, Cd and Pb in Pennine catchments (northern England) Environ. Pollut. 2010, 158, 1521.
| Dynamic modelling of atmospherically deposited Ni, Cu, Zn, Cd and Pb in Pennine catchments (northern England)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt1Kmsro%3D&md5=05ffa63fb3d9a88a5f8a2e8a067fd6c8CAS |
[4] S. Thakali, H. E. Allen, D. M. Di Toro, A. A. Ponizovsky, C. P. Rodney, F. J. Zhao, S. P. McGrath, A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils Environ. Sci. Technol. 2006, 40, 7085.
| A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soilsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2qs7%2FP&md5=2ac5de3ab9a02bbf06283ed95d1b5472CAS |
[5] A. Duffner, L. Weng, E. Hoffland, S. van der Zee, Multisurface modeling to predict free zinc ion concentrations in low-zinc soils Environ. Sci. Technol. 2014, 48, 5700.
| Multisurface modeling to predict free zinc ion concentrations in low-zinc soilsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsVelur0%3D&md5=2245ef314bcb5479cb1021ee4f48dc5dCAS |
[6] ICMM, EuroMetaux, Defra, EURAS, MERAG Metals Environmental Risk Assessment Guidance 2007 (The International Council on Mining and Metals (ICMM): London).
[7] US EPA, Aquatic Life Ambient Freshwater Quality Criteria – Copper (2007 Revision) 2007 (US Environmental Protection Agency, Office of Water: Washington DC).
[8] A. J. Verschoor, J. P. A. Lijzen, H. H. van den Broek, R. F. M. J. Cleve, R. N. J. Comans, J. J. Dijkstra, P. H. M. Vermij, Kritische Emissiewaarden voor Bouwstoffen. Milieuhygienische Onderbouwing en Consequenties voor Bouwmaterialen 2006 (Rijksinstituutvoor Volksgezondheid en Milieu: Bilthoven).
[9] S. Lofts, E. Tipping, Solid-solution metal partitioning in the Humber rivers: application of WHAM and SCAMP Sci. Total Environ. 2000, 251–252, 381.
| Solid-solution metal partitioning in the Humber rivers: application of WHAM and SCAMPCrossref | GoogleScholarGoogle Scholar |
[10] D. G. Strawn, L. Baker, Speciation of Cu in a contaminated agricultural soil measured by XAFS, µ-XAFS and µ-XRF Environ. Sci. Technol. 2008, 42, 37.
| Speciation of Cu in a contaminated agricultural soil measured by XAFS, µ-XAFS and µ-XRFCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlCks77K&md5=fe6bd0f81320230a1354e1dc6cfada83CAS |
[11] E. Tipping, S. Lofts, J. E. Sonke, VII. Humic Ion-Binding Model: a revised parametrisation of cation-binding by humic substances Environ. Chem. 2011, 8, 225.
| VII. Humic Ion-Binding Model: a revised parametrisation of cation-binding by humic substancesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVWrsL0%3D&md5=2424e2ce2d3e3ab7a6de47c3b4b825e9CAS |
[12] J. P. Gustafsson, Modeling the acid–base properties and metal complexation of humic substances with the Stockholm Humic Model J. Col. Int. Sci. 2001, 244, 102.
| Modeling the acid–base properties and metal complexation of humic substances with the Stockholm Humic ModelCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1KisLw%3D&md5=57e8c8ddc732f363a7391f87dec565b0CAS |
[13] D. G. Kinniburgh, W. H. Van Riemsdijk, L. K. Koopal, M. Borkovec, M. F. Benedetti, M. J. Avena, Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency Colloids Surf. A. 1999, 151, 147.
| Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistencyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvV2ns7g%3D&md5=9eab587c21502f3bcdac2e8c1ddfe88fCAS |
[14] J. P. Croué, M. F. Benedetti, D. Violleau, J. A. Leenheer, Characterization and copper binding of humic and non-humic organic matter isolated from the South Platte River: evidence for the presence of nitrogenous binding site Environ. Sci. Technol. 2003, 37, 328.
| Characterization and copper binding of humic and non-humic organic matter isolated from the South Platte River: evidence for the presence of nitrogenous binding siteCrossref | GoogleScholarGoogle Scholar |
[15] E. P. M. J. Fest, E. J. M. Temminghoff, R. N. J. Comans, W. H. van Riemsdijk, Partitioning of organic matter and heavy metals in a sandy soil: effects of extracting solution, solid to liquid ratio and pH Geoderma 2008, 146, 66.
| Partitioning of organic matter and heavy metals in a sandy soil: effects of extracting solution, solid to liquid ratio and pHCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVOjs74%3D&md5=aaa8e5cfdbe737e4901379739ceca65eCAS |
[16] H. Xue, L. Sigg, Comparison of the complexation of Cu and Cd by humic or fulvic acids and by ligands observed in lake waters Aquat. Geochem. 1999, 5, 313.
| Comparison of the complexation of Cu and Cd by humic or fulvic acids and by ligands observed in lake watersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivVCmtw%3D%3D&md5=188c71e00f79857626c0e5e800edaaf1CAS |
[17] E. Tipping, Cation Binding by Humic Substances 2002 (Cambridge University Press: Cambridge, UK).
[18] J. P. Gustafsson, D. B. Kleja, Modeling salt-dependent proton binding by organic soils with the NICA-Donnan and Stockholm Humic models Environ. Sci. Technol. 2005, 39, 5372.
| Modeling salt-dependent proton binding by organic soils with the NICA-Donnan and Stockholm Humic modelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVejuro%3D&md5=ecce1a2ed1846ca0ef5350b050641bc8CAS |
[19] I. A. M. Ahmed, J. Hamilton-Taylor, S. Lofts, J. C. L. Meeussen, C. Lin, H. Zhang, W. Davison, Testing copper-speciation predictions in freshwaters over a wide range of metal–organic matter ratios Environ. Sci. Technol. 2013, 47, 1487.
| 1:CAS:528:DC%2BC3sXhslGhsw%3D%3D&md5=c48c917e4767e9b237cb688e4c1d8080CAS |
[20] J. J. Dijkstra, J. C. L. Meeussen, R. N. J. Comans, Evaluation of a generic multisurface sorption model for inorganic soil contaminants Environ. Sci. Technol. 2009, 43, 6196.
| Evaluation of a generic multisurface sorption model for inorganic soil contaminantsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFSltrc%3D&md5=b62fc93df6a059766f22a69a4be04910CAS |
[21] D. G. Lumsdon, Partitioning of organic carbon, aluminium and cadmium between solid and solution in soils: application of a mineral humic particle additivity model Eur. J. Soil Sci. 2004, 55, 271.
| Partitioning of organic carbon, aluminium and cadmium between solid and solution in soils: application of a mineral humic particle additivity modelCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFCks7o%3D&md5=491a1f61498e745196a54fef6f0cb3b3CAS |
[22] L. Weng, E. J. M. Temminghoff, W. H. Van Riemsdijk, Contribution of individual sorbents to the control of heavy metal activity in sandy soil Environ. Sci. Technol. 2001, 35, 4436.
| Contribution of individual sorbents to the control of heavy metal activity in sandy soilCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntlGru74%3D&md5=0fb2f0f0d85bc4eb1fe61822727bf721CAS |
[23] R. López, D. Gondar, J. Antelo, S. Fiol, F. Arce, Study of the acid–base properties of a peat soil and its humin and humic acid fractions Eur. J. Soil Sci. 2012, 63, 487.
| Study of the acid–base properties of a peat soil and its humin and humic acid fractionsCrossref | GoogleScholarGoogle Scholar |
[24] E. M. Thurman, R. L. Malcolm, Preparative isolation of aquatic humic substances Environ. Sci. Technol. 1981, 15, 463.
| Preparative isolation of aquatic humic substancesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXksV2jsL4%3D&md5=fb184d7853b1184a69d9490d7d8650beCAS |
[25] W. G. Botero, L. C. Oliveira, J. C. Rocha, A. H. Rosa, A. Santos, Peat humic substances enriched with nutrients for agricultural applications: competition between nutrients and non-essential metals present in tropical soils J. Hazard. Mater. 2010, 177, 307.
| Peat humic substances enriched with nutrients for agricultural applications: competition between nutrients and non-essential metals present in tropical soilsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisV2ksLg%3D&md5=a1a2b88530190f3c4ad5af758d7dfa48CAS |
[26] J. E. Groenenberg, P. F. A. M. Römkens, A. van Zomeren, S. M. Rodrigues, R. N. J. Comans, Evaluation of the single dilute (0.43 M) nitric acid extraction to determine geochemically reactive elements in soil Environ. Sci. Technol. 2017, 51, 2246.
| Evaluation of the single dilute (0.43 M) nitric acid extraction to determine geochemically reactive elements in soilCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXitVOhsLc%3D&md5=8e38cc3042844f2b7439fb7ff24db09aCAS |
[27] E. M. Thurman, Organic Geochemistry of Natural Waters, 1985 (Springer: Amsterdam).
[28] J. Galceran, E. Companys, J. Puy, J. Cecilia, J. L. Garces, AGNES: a new electroanalytical technique for measuring free metal ion concentration J. Electroanal. Chem. 2004, 566, 95.
| AGNES: a new electroanalytical technique for measuring free metal ion concentrationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislGhsro%3D&md5=e2217638399617ed9c738bb4d2452471CAS |
[29] C. Parat, L. Authier, D. Aguilar, E. Companys, J. Puy, J. Galceran, M. Potin-Gautier, Direct determination of free metal concentration by implementing stripping chronopotentiometry as the second stage of AGNES Analyst 2011, 136, 4337.
| Direct determination of free metal concentration by implementing stripping chronopotentiometry as the second stage of AGNESCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ags7jN&md5=0ac57ca0a79a71073b5d347fcba5c742CAS |
[30] L. S. Rocha, H. M. Carapuça, J. P. Pinheiro, Evaluation of nanometer-thick mercury film electrodes for stripping chronopotentiometry J. Electroanal. Chem. 2007, 610, 37.
| Evaluation of nanometer-thick mercury film electrodes for stripping chronopotentiometryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yiurrJ&md5=72486b484b4791778cc2d22af30ee779CAS |
[31] N. Janot, J. P. Pinheiro, W. G. Botero, J. C. L. Meeussen, J. E. Groenenberg, PEST-ORCHESTRA, a tool for optimising advanced ion-binding model parameters: derivation of NICA-Donnan model parameters for humic substances reactivity Environ. Chem. 2017, 14, 31.
| PEST-ORCHESTRA, a tool for optimising advanced ion-binding model parameters: derivation of NICA-Donnan model parameters for humic substances reactivityCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhs1Wquw%3D%3D&md5=4d3c7de82121119af0858c32d443479eCAS |
[32] M. F. Benedetti, W. H. van Riemsdijk, L. K. Koopal, Humic substances considered as a heterogeneous Donnan gel phase Environ. Sci. Technol. 1996, 30, 1805.
| Humic substances considered as a heterogeneous Donnan gel phaseCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFans7Y%3D&md5=0569c6eadb669cfad022f266c644c917CAS |
[33] E. Companys, J. L. Garces, J. Salvador, J. Galceran, J. Puy, F. Mas, Electrostatic and specific binding to macromolecular ligands. A general analytical expression for the Donnan volume Coll. Surf. A. 2007, 306, 2.
| Electrostatic and specific binding to macromolecular ligands. A general analytical expression for the Donnan volumeCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFersbY%3D&md5=8a9bde22488e8e181c2d81f30c4c1e13CAS |
[34] P. Tinoco, G. Almendros, F. J. González-Vila, J. Sanz, J. A. González-Pérez, Revisiting molecular characteristics responsive for the aromaticity of soil humic acids J. Soils Sediments 2015, 15, 781.
| Revisiting molecular characteristics responsive for the aromaticity of soil humic acidsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVenu7zJ&md5=225193982ebed4bf74b66c7b60ef3f41CAS |
[35] L. M. Neto, A. E. Andriulo, D. G. Traghetta, Effects of cultivation on ESR spectra of organic matter from soil size fractions of a Mollisol Soil Sci. 1994, 157, 365.
| Effects of cultivation on ESR spectra of organic matter from soil size fractions of a MollisolCrossref | GoogleScholarGoogle Scholar |
[36] T. J. Tambach, H. Veld, J. Griffioen, Influence of HCl/HF treatment on organic matter in aquifer sediments: a Rock-Eval pyrolysis study Appl. Geochem. 2009, 24, 2144.
| Influence of HCl/HF treatment on organic matter in aquifer sediments: a Rock-Eval pyrolysis studyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWitLvK&md5=6bf00e9d3c65d2e98140d7d7be8ccb2cCAS |
[37] C. J. Milne, D. G. Kinniburgh, E. Tipping, Generic NICA-Donnan model parameters for proton binding by humic substances Environ. Sci. Technol. 2001, 35, 2049.
| Generic NICA-Donnan model parameters for proton binding by humic substancesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1GrsLY%3D&md5=b9a49e535a0b3ee959475b77b53e0d40CAS |
[38] C. J. Milne, D. G. Kinniburgh, W. H. van Riemsdijk, E. Tipping, Generic NICA-Donnan model parameters for metal ion binding by humic substances Environ. Sci. Technol. 2003, 37, 958.
| Generic NICA-Donnan model parameters for metal ion binding by humic substancesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVWgsQ%3D%3D&md5=6a9fd67b6391642c8415ee8f2d5a7c1dCAS |
[39] N. S. Randhawa, F. E. Broadbent, Soil organic matter–metal complexes: 6. Stability constants of zinc–humic acid complexes at different pH values Soil Sci. 1965, 99, 362.
| Soil organic matter–metal complexes: 6. Stability constants of zinc–humic acid complexes at different pH valuesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXkvVert7Y%3D&md5=146ae055d2ee99daf8b8841ae5a37d2aCAS |
[40] L. A. Oste, E. J. M. Temminghoff, T. M. Lexmond, W. H. van Riemsdijk, Measuring and modeling zinc and cadmium binding by humic acid Anal. Chem. 2002, 74, 856.
| Measuring and modeling zinc and cadmium binding by humic acidCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVeksA%3D%3D&md5=15720de43e03e9e072edaf2376a06ae5CAS |
[41] J. E. Groenenberg, G. F. Koopmans, R. N. J. Comans, Uncertainty analyses of the non-ideal competitive adsorption–Donnan model: Effects of dissolved organic matter variability on predicted metal speciation in soil solution Environ. Sci. Technol. 2010, 44, 1340.
| Uncertainty analyses of the non-ideal competitive adsorption–Donnan model: Effects of dissolved organic matter variability on predicted metal speciation in soil solutionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVyh&md5=5456461e9c01ad6323a3158c4147e1a4CAS |
[42] J. Lehman, M. Kleber, The contentious nature of soil organic matter Nature 2015, 528, 60.