Impact of anions on the surface organisation of lipid monolayers at the air–water interface
Siyang Li A , Lin Du A B and Wenxing Wang AA Environment Research Institute, Shandong University, Shanda South Road 27, 250100 Shandong, China.
B Corresponding author: Email: lindu@sdu.edu.cn
Environmental Chemistry 14(7) 407-416 https://doi.org/10.1071/EN17147
Submitted: 14 August 2017 Accepted: 14 October 2017 Published: 31 January 2018
Journal Compilation © CSIRO 2017 Open Access CC BY-NC-ND
Environmental context. Lipids released from lysis of phytoplankton cells are enriched in the sea surface microlayer. Such surface-active organics can be transferred through bursting bubbles to sea-spray aerosols where they can influence atmospheric chemistry. The results presented here suggest that phospholipids combine more readily with SO42− than with Br−, leading to enrichment of organic-coated sulfate salts in marine aerosols.
Abstract. Inorganic salts and organic matter are known to be present at higher levels in the sea surface microlayer and marine aerosols; however, the impact of common anions on their surface properties is not well understood. Here, a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer was enriched with the sodium and ammonium salts of different anions (Br−, Cl−, NO3−, SO42−, CH3COO−, and HCO3−), and the effects on the surface properties of the monolayer were investigated. The monolayer phase behaviour and the structure of the lipid phases were studied by surface pressure–area (π–A) isotherms and infrared reflection-absorption spectroscopy (IRRAS). The presence of salts in the subphase was found to increase the surface pressure of the DPPC monolayer at a fixed area per molecule. The effect of the anions follows the order of the Hofmeister series. The higher concentration of salt solution caused the π–A isotherm to shift to larger area. The IRRAS spectra demonstrate that the ordering of the DPPC molecules in the liquid condensed phase remains essentially unaffected, even at higher electrolyte concentrations. DPPC molecules combined with SO42− could be transferred from the ocean to sea spray aerosol. The present study finds that the anions have significant influence on the surface organisation and, consequently, the interfacial properties, of the surface-active species at the air–water interface, a finding that has further implications for atmospheric aerosol nucleation.
Additional keywords: anions, Hofmeister series, sea spray aerosol, sea surface microlayer.
References
[1] R. E. Cochran, O. S. Ryder, V. H. Grassian, K. A. Prather, Sea spray aerosol: The chemical link between the oceans, atmosphere, and climate Acc. Chem. Res. 2017, 50, 599.| Sea spray aerosol: The chemical link between the oceans, atmosphere, and climateCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXkt1WktLs%3D&md5=de1ca669f7b7b890571287b8bd8e1eb3CAS |
[2] D. J. Erickson, R. A. Duce, On the global flux of atmospheric sea salt J. Geophys. Res. 1988, 93, 14079.
| On the global flux of atmospheric sea saltCrossref | GoogleScholarGoogle Scholar |
[3] P. K. Quinn, D. B. Collins, V. H. Grassian, K. A. Prather, T. S. Bates, Chemistry and related properties of freshly emitted sea spray aerosol Chem. Rev. 2015, 115, 4383.
| Chemistry and related properties of freshly emitted sea spray aerosolCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtVWrsL8%3D&md5=e66ac5d5da56d781c9692a2e380d44b7CAS |
[4] P. K. Quinn, T. S. Bates, K. S. Schulz, D. J. Coffman, A. A. Frossard, L. M. Russell, W. C. Keene, D. J. Kieber, Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol Nat. Geosci. 2014, 7, 228.
| Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosolCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt12nsbo%3D&md5=aa0b6df3ab01dc667f34bbb3c4fb03f6CAS |
[5] T. Jayarathne, C. M. Sultana, C. Lee, F. Malfatti, J. L. Cox, M. A. Pendergraft, K. A. Moore, F Azam, A. V. Tivanski, C. D. Cappa, T. H. Bertram, V. H. Grassian, K. A. Prather, E. A. Stone, Enrichment of saccharides and divalent cations in sea spray aerosol during two phytoplankton blooms Environ. Sci. Technol. 2016, 50, 11511.
| Enrichment of saccharides and divalent cations in sea spray aerosol during two phytoplankton bloomsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1altrnJ&md5=d98c8b188b5a6a74baf79055553fdf5bCAS |
[6] C. D. O’Dowd, M. H. Smith, I. E. Consterdine, J. A. Lowe, Marine aerosol, sea-salt, and the marine sulphur cycle: A short review Atmos. Environ. 1997, 31, 73.
| Marine aerosol, sea-salt, and the marine sulphur cycle: A short reviewCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntVOnt74%3D&md5=7e5f5d52323bf46b4f6a53a25b1352c9CAS |
[7] K. A. Prather, T. H. Bertram, V. H. Grassian, G. B. Deane, M. D. Stokes, P. J. DeMott, L. I. Aluwihare, B. P. Palenik, F. Azam, J. H. Seinfeld, R. C. Moffet, M. J. Molina, C. D. Cappa, F. M. Geiger, G. C. Roberts, L. M. Russell, A. P. Ault, J. Baltrusaitis, D. B. Collins, C. E. Corrigan, L. A. Cuadra-Rodriguez, C. J. Ebben, S. D. Forestieri, T. L. Guasco, S. P. Hersey, M. J. Kim, W. F. Lambert, R. L. Modini, W. Mui, B. E. Pedler, M. J. Ruppel, O. S. Ryder, N. G. Schoepp, R. C. Sullivan, D. Zhao, Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol Proc. Natl. Acad. Sci. USA 2013, 110, 7550.
| Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosolCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFGrtro%3D&md5=057fc2ae73601dfeb81272a88774f32fCAS |
[8] C. D. O’Dowd, M. C. Facchini, F. Cavalli, D. Ceburnis, M. Mircea, S. Decesari, S Fuzzi, Y. J. Yoon, J.-P. Putaud, Biogenically driven organic contribution to marine aerosol Nature 2004, 431, 676.
| Biogenically driven organic contribution to marine aerosolCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFGrurk%3D&md5=6a76612d651b8a00e37f638c3b23821eCAS |
[9] D. B. Collins, T. H. Bertram, C. M. Sultana, C. Lee, J. L. Axson, K. A. Prather, Phytoplankton blooms weakly influence the cloud forming ability of sea spray aerosol Geophys. Res. Lett. 2016, 43, 9975.
| Phytoplankton blooms weakly influence the cloud forming ability of sea spray aerosolCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1Ojt7jI&md5=2d3e72902df4e954439170999edfccbcCAS |
[10] S. Elliott, S. M. Burrows, C. Deal, X. Liu, M. Long, O. Ogunro, L. M. Russell, O Wingenter, Prospects for simulating macromolecular surfactant chemistry at the ocean-atmosphere boundary Environ. Res. Lett. 2014, 9,
| Prospects for simulating macromolecular surfactant chemistry at the ocean-atmosphere boundaryCrossref | GoogleScholarGoogle Scholar |
[11] D. J. Donaldson, C. George, Sea-surface chemistry and its impact on the marine boundary layer Environ. Sci. Technol. 2012, 46, 10385.
| Sea-surface chemistry and its impact on the marine boundary layerCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVWmsLs%3D&md5=aa1bac7293b4f848dd6b69faa7c2ec0bCAS |
[12] M. Cunliffe, A. Engel, S. Frka, B. Gasparovic, C. Guitart, J. C. Murrell, M. Salter, C. Stolle, R. Upstill-Goddard, O. Wurl, Sea surface microlayers: A unified physicochemical and biological perspective of the air-ocean interface Prog. Oceanogr. 2013, 109, 104.
| Sea surface microlayers: A unified physicochemical and biological perspective of the air-ocean interfaceCrossref | GoogleScholarGoogle Scholar |
[13] R. E. Cochran, O. Laskina, T. Jayarathne, A. Laskin, J. Laskin, P. Lin, C. Sultana, C. Lee, K. A. Moore, C. D. Cappa, T. H. Bertram, K. A. Prather, V. H. Grassian, E. A. Stone, Analysis of organic anionic surfactants in fine and coarse fractions of freshly emitted sea spray aerosol Environ. Sci. Technol. 2016, 50, 2477.
| Analysis of organic anionic surfactants in fine and coarse fractions of freshly emitted sea spray aerosolCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslShur8%3D&md5=c6ddf29f0bc8516dcd7d2008fd3f2059CAS |
[14] K. Hayakawa, N. Handa, K. Kawanobe, C. S. Wong, Factors controlling the temporal variation of fatty acids in piculate matter during a phytoplankton bloom in a marine mesocosm Mar. Chem. 1996, 52, 233.
| Factors controlling the temporal variation of fatty acids in piculate matter during a phytoplankton bloom in a marine mesocosmCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsFOntb4%3D&md5=4cab71190f03313b393bb75dcf8b96f3CAS |
[15] D. J. Donaldson, V. Vaida, The influence of organic films at the air-aqueous boundary on atmospheric processes Chem. Rev. 2006, 106, 1445.
| The influence of organic films at the air-aqueous boundary on atmospheric processesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVOmt7o%3D&md5=d607d344c425e5730e9037b9ee93efc4CAS |
[16] J. Y. Park, S. Lim, K. Park, Mixing state of submicrometer sea spray particles enriched by insoluble species in bubble-bursting experiments J. Atmos. Ocean. Technol. 2014, 31, 93.
| Mixing state of submicrometer sea spray particles enriched by insoluble species in bubble-bursting experimentsCrossref | GoogleScholarGoogle Scholar |
[17] M. E. Salter, E. Hamacher-Barth, C. Leck, J. Werner, C. M. Johnson, I. Riipinen, E. D. Nilsson, P Zieger, Calcium enrichment in sea spray aerosol particles Geophys. Res. Lett. 2016, 43, 8277.
| Calcium enrichment in sea spray aerosol particlesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhtl2msbnE&md5=18ad248319bd08bac58eb9914e7449b8CAS |
[18] M. A. Shaloski, T. B. Sobyra, G. M. Nathanson, DCI transport through dodecyl sulfate films on salty glycerol: Effects of seawater ions on gas entry J. Phys. Chem. A 2015, 119, 12357.
| DCI transport through dodecyl sulfate films on salty glycerol: Effects of seawater ions on gas entryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVWntrzK&md5=87d5a47b9b35e3f8e078b53dac24afe7CAS |
[19] E. M. Adams, C. B. Casper, H. C. Allen, Effect of cation enrichment on dipalmitoylphosphatidylcholine (DPPC) monolayers at the air-water interface J. Colloid Interface Sci. 2016, 478, 353.
| Effect of cation enrichment on dipalmitoylphosphatidylcholine (DPPC) monolayers at the air-water interfaceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVagsL%2FF&md5=83a4bd589570b07b054914f542f52183CAS |
[20] D. J. Straub, T. Lee, J. L. Collett, Chemical composition of marine stratocumulus clouds over the eastern Pacific Ocean J. Geophys. Res. Atmos. 2007, 112, D04307.
| Chemical composition of marine stratocumulus clouds over the eastern Pacific OceanCrossref | GoogleScholarGoogle Scholar |
[21] K. Ho, S. Lee, J. C. Chow, J. G. Watson, Characterization of PM 10 and PM 2.5 source profiles for fugitive dust in Hong Kong Atmos. Environ. 2003, 37, 1023.
| Characterization of PM 10 and PM 2.5 source profiles for fugitive dust in Hong KongCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlGrtLk%3D&md5=b8b8b59adb6727ad9d78ad9b44a94ff2CAS |
[22] X. Querol, A. Alastuey, S. Rodriguez, F. Plana, C. R. Ruiz, N. Cots, G. Massagué, O. Puig, PM10 and PM2. 5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain Atmos. Environ. 2001, 35, 6407.
| PM10 and PM2. 5 source apportionment in the Barcelona Metropolitan area, Catalonia, SpainCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslOhsrc%3D&md5=2b5fa9ca6a64eaee60bda7fa03ec2e71CAS |
[23] K. Ito, N. Xue, G. Thurston, Spatial variation of PM 2.5 chemical species and source-apportioned mass concentrations in New York City Atmos. Environ. 2004, 38, 5269.
| Spatial variation of PM 2.5 chemical species and source-apportioned mass concentrations in New York CityCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVCquro%3D&md5=834067584cf28bcd8f77ef65fdf23b46CAS |
[24] N. N. Maykut, J. Lewtas, E. Kim, T. V. Larson, Source apportionment of PM2.5 at an urban IMPROVE site in Seattle, Washington Environ. Sci. Technol. 2003, 37, 5135.
| Source apportionment of PM2.5 at an urban IMPROVE site in Seattle, WashingtonCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFCgtb8%3D&md5=728f8dc105cc2c37fcd9d8c8d3ccc949CAS |
[25] Q. Zhou, L. Wang, Z. Cao, X. Zhou, F. Yang, P. Fu, Z. Wang, J. Hu, L. Ding, W. Jiang, Dispersion of atmospheric fine particulate matters in simulated lung fluid and their effects on model cell membranes Sci. Total Environ. 2016, 542, 36.
| Dispersion of atmospheric fine particulate matters in simulated lung fluid and their effects on model cell membranesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslCnu73J&md5=c26f03ec3a09efae1933d5848fb4a5bfCAS |
[26] E. Leontidis, Investigations of the Hofmeister series and other specific ion effects using lipid model systems Adv. Colloid Interface Sci. 2017, 243, 8.
| Investigations of the Hofmeister series and other specific ion effects using lipid model systemsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXlslymurs%3D&md5=ae830bcd44d818663f5974d08b4eda24CAS |
[27] B. Wen, C. Sun, B. Bai, E. Y. Gatapova, O. A. Kabov, Ionic hydration-induced evolution of decane-water interfacial tension Phys. Chem. Chem. Phys. 2017, 19, 14606.
| Ionic hydration-induced evolution of decane-water interfacial tensionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXntFOhtL8%3D&md5=a108f43004ba40f8b5330c40badc4f85CAS |
[28] E. M. Adams, D. Verreault, T. Jayarathne, R. E. Cochran, E. A. Stone, H. C. Allen, Surface organization of a DPPC monolayer on concentrated SrCl2 and ZnCl2 solutions Phys. Chem. Chem. Phys. 2016, 18, 32345.
| Surface organization of a DPPC monolayer on concentrated SrCl2 and ZnCl2 solutionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvVOjsb3J&md5=c9b169b3e65a4648401a4428410a2027CAS |
[29] J. Brandsma, E. C. Hopmans, C. P. D. Brussaard, H. J. Witte, S. Schouten, J. S. S. Damste, Spatial distribution of intact polar lipids in North Sea surface waters: Relationship with environmental conditions and microbial community composition Limnol. Oceanogr. 2012, 57, 959.
| Spatial distribution of intact polar lipids in North Sea surface waters: Relationship with environmental conditions and microbial community compositionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlCqs7bI&md5=6da9756f369d7dd50fa6dac0827a596cCAS |
[30] L. F. Espinosa, S. Pantoja, L. A. Pinto, J. Rullkoetter, Water column distribution of phospholipid-derived fatty acids of marine microorganisms in the Humboldt Current system off northern Chile Deep Sea Res. Part II: Top. Stud. Oceanogr. 2009, 56, 1063.
| Water column distribution of phospholipid-derived fatty acids of marine microorganisms in the Humboldt Current system off northern ChileCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1ymur8%3D&md5=5673d8b3d39c07cfa2bf1b1a4ed51e2bCAS |
[31] S. Li, L. Du, Z. Wei, W. Wang, Aqueous-phase aerosols on the air-water interface: Response of fatty acid Langmuir monolayers to atmospheric inorganic ions Sci. Total Environ. 2017, 580, 1155.
| Aqueous-phase aerosols on the air-water interface: Response of fatty acid Langmuir monolayers to atmospheric inorganic ionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitFehsrnM&md5=ad7366cbec50732a3a0d938f35a0c4c4CAS |
[32] M. C. Phillips, D. Chapman, Monolayer characteristics of saturated 1,2-diacyl phosphatidylcholines (lecithins) and phosphatidylethanolamines at the air-water interface Biochim. Biophys. Acta 1968, 163, 301.
| Monolayer characteristics of saturated 1,2-diacyl phosphatidylcholines (lecithins) and phosphatidylethanolamines at the air-water interfaceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXovVKq&md5=5d61da4288ab13b32dc89dc6e7785ef8CAS |
[33] K. D. Collins, M. W. Washabaugh, The Hofmeister effect and the behaviour of water at interfaces Q. Rev. Biophys. 1985, 18, 323.
| The Hofmeister effect and the behaviour of water at interfacesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhsFWlurs%3D&md5=794c2c8584fc2c97c28e43ea38f448bdCAS |
[34] D. F. Parsons, M. Bostroem, P. Lo Nostro, B. W. Ninham, Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size Phys. Chem. Chem. Phys. 2011, 13, 12352.
| Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion sizeCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1altrc%3D&md5=6b887f3355431e16a6d3036774878718CAS |
[35] X. Li, K. Huang, J. Lin, Y. Xu, H. Liu, Hofmeister ion series and its mechanism of action on affecting the behavior of macromolecular solutes in aqueous solution Prog. Chem. 2014, 26, 1285.
| 1:CAS:528:DC%2BC2MXhvVKltLjJ&md5=db4908412c1c61ce7f470a2136cbd66eCAS |
[36] Z. Yang, Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis J. Biotechnol. 2009, 144, 12.
| Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysisCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCntr7N&md5=659672dbcfbd167e2606a42ea295ab2cCAS |
[37] A. Aroti, E. Leontidis, E. Maltseva, G. Brezesinski, Effects of Hofmeister anions on DPPC Langmuir monolayers at the air-water interface J. Phys. Chem. B 2004, 108, 15238.
| Effects of Hofmeister anions on DPPC Langmuir monolayers at the air-water interfaceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVyju7s%3D&md5=0d99786a4459d38141470f7218a12d50CAS |
[38] Y. J. Zhang, P. S. Cremer, Chemistry of Hofmeister anions and osmolytes Annu. Rev. Phys. Chem. 2010, 61, 63.
| Chemistry of Hofmeister anions and osmolytesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt1eqtLc%3D&md5=6a301fd66fa196c0f42d8206b1614be4CAS |
[39] M. C. Gurau, S. M. Lim, E. T. Castellana, F. Albertorio, S. Kataoka, P. S. Cremer, On the mechanism of the Hofmeister effect J. Am. Chem. Soc. 2004, 126, 10522.
| On the mechanism of the Hofmeister effectCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVWjtb8%3D&md5=d533f863db2dd4e1308489b66aa9e322CAS |
[40] J. N. Sachs, T. B. Woolf, Understanding the Hofmeister effect in interactions between chaotropic anions and lipid bilayers: Molecular dynamics simulations J. Am. Chem. Soc. 2003, 125, 8742.
| Understanding the Hofmeister effect in interactions between chaotropic anions and lipid bilayers: Molecular dynamics simulationsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFWlsrY%3D&md5=57b1e5f41cb30edc1d04924e1349784eCAS |
[41] M. Bostrom, D. R. M. Williams, B. W. Ninham, Specific ion effects: Why DLVO theory fails for biology and colloid systems Phys. Rev. Lett. 2001, 87, 168103.
| Specific ion effects: Why DLVO theory fails for biology and colloid systemsCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MnjslGktQ%3D%3D&md5=f5e9c857477761c5d72fa0604b6fe045CAS |
[42] A. Aroti, E. Leontidis, M. Dubois, T. Zemb, Effects of monovalent anions of the Hofmeister series on DPPC lipid Bilayers part I: Swelling and in-plane equations of state Biophys. J. 2007, 93, 1580.
| Effects of monovalent anions of the Hofmeister series on DPPC lipid Bilayers part I: Swelling and in-plane equations of stateCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVKis7s%3D&md5=931b81515b40cfa1c262de2127f161e4CAS |
[43] M. G. Cacace, E. M. Landau, J. J. Ramsden, The Hofmeister series: salt and solvent effects on interfacial phenomena Q. Rev. Biophys. 1997, 30, 241.
| The Hofmeister series: salt and solvent effects on interfacial phenomenaCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c%2Fls1alug%3D%3D&md5=d7d8235f32451a0b4e66a7ba8cbd1dc1CAS |
[44] D. O. Shah, J. H. Schulman, Binding of metal ions to monolayers of lecithins plasmalogen cardiolipin and dicetyl phosphate J. Lipid Res. 1965, 6, 341.
| 1:CAS:528:DyaF2MXkt1Ggtrk%3D&md5=6549a1d7a5aff8a0af96df7ec96bcbacCAS |
[45] C. Lendrum, K. M. McGrath, The role of subphase chemistry in controlling monolayer behaviour J. Colloid Interface Sci. 2009, 331, 206.
| The role of subphase chemistry in controlling monolayer behaviourCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjs1Sksw%3D%3D&md5=6a079e7979e82f29f2b1482540c01971CAS |
[46] C. D. Lendrum, B. Ingham, B. Lin, M. Meron, M. F. Toney, K. M. McGrath, Nonequilibrium 2-hydroxyoctadecanoic acid monolayers: Effect of electrolytes Langmuir 2011, 27, 4430.
| Nonequilibrium 2-hydroxyoctadecanoic acid monolayers: Effect of electrolytesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVCqs78%3D&md5=6b23fdd3c41720687cbe6bb6f9874b90CAS |
[47] K. D. Collins, Sticky ions in biological systems Proc. Natl. Acad. Sci. USA 1995, 92, 5553.
| Sticky ions in biological systemsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtFOgsLg%3D&md5=729fe9e70a4cb74e23c62bca391d2e11CAS |
[48] K. D. Collins, Charge density-dependent strength of hydration and biological structure Biophys. J. 1997, 72, 65.
| Charge density-dependent strength of hydration and biological structureCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtFGltw%3D%3D&md5=4ed1263a749d3473cde1863b0b978e28CAS |
[49] P. H. von Hippel, K. Y. Wong, Neutral salts: the generality of their effects on the stability of macromolecular conformations Science 1964, 145, 577.
| Neutral salts: the generality of their effects on the stability of macromolecular conformationsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXks1anu7k%3D&md5=03be0173c0aa5207ee535cfcbd375902CAS |
[50] L. M. Pegram, M. T. Record, Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air-water interface J. Phys. Chem. B 2007, 111, 5411.
| Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air-water interfaceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1Siur0%3D&md5=c494c55bd766efb0fddeebada994700aCAS |
[51] R. M. Garland, M. E. Wise, M. R. Beaver, H. L. DeWitt, A. C. Aiken, J. L. Jimenez, M. A. Tolbert, Impact of palmitic acid coating on the water uptake and loss of ammonium sulfate particles Atmos. Chem. Phys. 2005, 5, 1951.
| Impact of palmitic acid coating on the water uptake and loss of ammonium sulfate particlesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVejs7rM&md5=fba9a46ca0dbc6b79b50d5ad5e4abba8CAS |
[52] T. M. Raymond, S. N. Pandis, Formation of cloud droplets by multicomponent organic particles J. Geophys. Res. Atmos. 2003, 108, 4469.
| Formation of cloud droplets by multicomponent organic particlesCrossref | GoogleScholarGoogle Scholar |
[53] Q. T. Nguyen, K. H. Kjaer, K. I. Kling, T. Boesen, M. Bilde, Impact of fatty acid coating on the CCN activity of sea salt particles Tellus B Chem. Phys. Meterol. 2017, 69, 1304064.
| Impact of fatty acid coating on the CCN activity of sea salt particlesCrossref | GoogleScholarGoogle Scholar |
[54] K. D. Collins, Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process Methods 2004, 34, 300.
| Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization processCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFCrs7o%3D&md5=84b949ba8d9d68015e69281322271978CAS |
[55] M. Christoforou, E. Leontidis, G. Brezesinski, Effects of sodium salts of lyotropic anions on low-temperature, ordered lipid monolayers J. Phys. Chem. B 2012, 116, 14602.
| Effects of sodium salts of lyotropic anions on low-temperature, ordered lipid monolayersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKhsbnM&md5=4ba215b24d20a74f3b5c113196452b73CAS |
[56] R. Mendelsohn, J. W. Brauner, A. Gericke, External infrared reflection absorption spectrometry of monolayer films at the air-water interface Annu. Rev. Phys. Chem. 1995, 46, 305.
| External infrared reflection absorption spectrometry of monolayer films at the air-water interfaceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptlOju78%3D&md5=b0a18279f724dd9504212cf8cdb583a9CAS |
[57] C. H. Huang, J. R. Lapides, I. W. Levin, Phase-transition behavior of saturated, symmetric chain phospholipid bilayer dispersions determined by Raman spectroscopy: correlation between spectral and thermodynamic parameters J. Am. Chem. Soc. 1982, 104, 5926.
| Phase-transition behavior of saturated, symmetric chain phospholipid bilayer dispersions determined by Raman spectroscopy: correlation between spectral and thermodynamic parametersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlslOgsL0%3D&md5=1da1107571430770aae51ebacd53dafeCAS |
[58] P. H. B. Aoki, L. F. C. Morato, F. J. Pavinatto, T. M. Nobre, C. J. L. Constantino, O. N. Oliveira, Molecular-level modifications induced by photo-oxidation of lipid monolayers interacting with erythrosin Langmuir 2016, 32, 3766.
| Molecular-level modifications induced by photo-oxidation of lipid monolayers interacting with erythrosinCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XkvVOrtbo%3D&md5=ffd7cca7f09d701ad4c16e361a6f4168CAS |
[59] I. W. Levin, T. E. Thompson, Y. Barenholz, C. Huang, Two types of hydrocarbon chain interdigitation in sphingomyelin bilayers Biochemistry 1985, 24, 6282.
| Two types of hydrocarbon chain interdigitation in sphingomyelin bilayersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlslCgtro%3D&md5=a9d1c3fbaa26e681aaf358517cbd71a4CAS |
[60] L. Ghaicha, R. M. Leblanc, A. K. Chattopadhyay, Influence of concentrated ammonium nitrate solution on monolayers of some dicarboxylic acid derivatives at the air/water interface Langmuir 1993, 9, 288.
| Influence of concentrated ammonium nitrate solution on monolayers of some dicarboxylic acid derivatives at the air/water interfaceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1aqug%3D%3D&md5=fb33a4d7b64420b2dc454a9f166b31d4CAS |
[61] R. Maheshwari, A. Dhathathreyan, Influence of ammonium nitrate in phase transitions of Langmuir and Langmuir-Blodgett films at air/solution and solid/solution interfaces J. Colloid Interface Sci. 2004, 275, 270.
| Influence of ammonium nitrate in phase transitions of Langmuir and Langmuir-Blodgett films at air/solution and solid/solution interfacesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFKktbo%3D&md5=f2e0f53375f243899a7a83f15a9c580cCAS |
[62] I. Masalova, K. Kovalchuk, A. Y. Malkin, IR studies of interfacial interaction of the succinic surfactants with different head groups in highly concentrated W/O emulsions J. Dispers. Sci. Technol. 2011, 32, 1547.
| IR studies of interfacial interaction of the succinic surfactants with different head groups in highly concentrated W/O emulsionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlGlsbrF&md5=845b00b50ff16b4b04e45adb9e927c2eCAS |
[63] J. Xia, L. X. Song, W. Liu, Y. Teng, Leveling effects of ammonium salts on thermal stabilities of polyethylene glycols Soft Matter 2013, 9, 9714.
| Leveling effects of ammonium salts on thermal stabilities of polyethylene glycolsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFSmtrnF&md5=ec243aaa56a28eca610fcbde95d7630aCAS |
[64] P. S. Gill, T. E. Graedel, C. J. Weschler, Organic films on atmospheric aerosol particles, fog droplets, cloud droplets, raindrops, and snowflakes Rev. Geophys. 1983, 21, 903.
| Organic films on atmospheric aerosol particles, fog droplets, cloud droplets, raindrops, and snowflakesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXkslequ7Y%3D&md5=b52723ec4475bbe539fa16ddf3ed3d28CAS |
[65] J. F. Davies, R. E. H. Miles, A. E. Haddrell, J. P. Reid, Influence of organic films on the evaporation and condensation of water in aerosol Proc. Natl. Acad. Sci. USA 2013, 110, 8807.
| Influence of organic films on the evaporation and condensation of water in aerosolCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFait77E&md5=6ffb8809e3bc455ffe8d35c157809e79CAS |
[66] Y. L. Sun, G. S. Zhuang, A. H. Tang, Y. Wang, Z. S. An, Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing Environ. Sci. Technol. 2006, 40, 3148.
| Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in BeijingCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtlSisbs%3D&md5=ab204b75bd6b1ab21ffe1dd121fa5042CAS |
[67] M. O. Andreae, R. J. Charlson, F. Bruynseels, H. Storms, R. Vangrieken, W. Maenhaut, Internal mixture of sea salt, silicates, and excess sulfate in marine aerosols Science 1986, 232, 1620.
| Internal mixture of sea salt, silicates, and excess sulfate in marine aerosolsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XksVKlsLY%3D&md5=f8b6a6e7f01d4ee260643d49f7858856CAS |
[68] E. Weingartner, H. Burtscher, U. Baltensperger, Hygroscopic properties of carbon and diesel soot particles Atmos. Environ. 1997, 31, 2311.
| Hygroscopic properties of carbon and diesel soot particlesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjslygs7c%3D&md5=929109e5bd987592884aaa06a9aebecbCAS |
[69] E. Thomas, Y. Rudich, S. Trakhtenberg, R. Ussyshkin, Water adsorption by hydrophobic organic surfaces: Experimental evidence and implications to the atmospheric properties of organic aerosols J. Geophys. Res. Atmos. 1999, 104, 16053.
| Water adsorption by hydrophobic organic surfaces: Experimental evidence and implications to the atmospheric properties of organic aerosolsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlt1Sgu7s%3D&md5=9c61f8c106c814df874e99f11bd1572aCAS |
[70] N. M. Persiantseva, O. B. Popovicheva, N. K. Shonija, Wetting and hydration of insoluble soot particles in the upper troposphere J. Environ. Monit. 2004, 6, 939.
| Wetting and hydration of insoluble soot particles in the upper troposphereCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVais7fN&md5=0e09b12a8eec399890584fe1ca73076cCAS |
[71] R. A. Braun, H. Dadashazar, A. B. MacDonald, A. M. Aldhaif, L. C. Maudlin, E. Crosbie, M. A. Aghdam, A. H. Mardi, A. Sorooshian, Impact of wildfire emissions on chloride and bromide depletion in marine aerosol particles Environ. Sci. Technol. 2017, 51, 9013.
| Impact of wildfire emissions on chloride and bromide depletion in marine aerosol particlesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtFGnsbzI&md5=d816315320e771b6b691e0e04635caa9CAS |
[72] R. Sander, P. J. Crutzen, Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea J. Geophys. Res. Atmos. 1996, 101, 9121.
| Model study indicating halogen activation and ozone destruction in polluted air masses transported to the seaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtlCjt7s%3D&md5=1f0e193bbac3a99d5616e73e5e62d006CAS |
[73] X. H. Yao, M. Fang, C. K. Chan, The size dependence of chloride depletion in fine and coarse sea-salt particles Atmos. Environ. 2003, 37, 743.
| The size dependence of chloride depletion in fine and coarse sea-salt particlesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlKhtw%3D%3D&md5=e6be98299ec6f32b186c7af07ee46ac4CAS |
[74] V. M. Kerminen, K. Teinila, R. Hillamo, T. Pakkanen, Substitution of chloride in sea-salt particles by inorganic and organic anions J. Aerosol Sci. 1998, 29, 929.
| Substitution of chloride in sea-salt particles by inorganic and organic anionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFeisbY%3D&md5=2c21a31bffa7361ff6e7dbee91f6996bCAS |
[75] H. C. Boyer, C. S. Dutcher, Atmospheric aqueous aerosol surface tensions: Isotherm-based modeling and biphasic microfluidic measurements J. Phys. Chem. A 2017, 121, 4733.
| Atmospheric aqueous aerosol surface tensions: Isotherm-based modeling and biphasic microfluidic measurementsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXns1Ontr0%3D&md5=7d4ab01a57c417e2da763d687430ed92CAS |
[76] J. Ovadnevaite, A. Zuend, A. Laaksonen, K. J. Sanchez, G. Roberts, D. Ceburnis, S. Decesari, M. Rinaldi, N. Hodas, M. C. Facchini, J. H. Seinfeld, C. O’Dowd, Surface tension prevails over solute effect in organic-influenced cloud droplet activation Nature 2017, 546, 637.
| Surface tension prevails over solute effect in organic-influenced cloud droplet activationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtVequrnE&md5=a9e5a51bd3dccc12aaff4696afc0f344CAS |
[77] A. Zelenyuk, M. J. Ezell, V. Perraud, S. N. Johnson, E. A. Bruns, Y. Yu, D. Imre, M. L. Alexander, B. J. Finlayson-Pitts, Characterization of organic coatings on hygroscopic salt particles and their atmospheric impacts Atmos. Environ. 2010, 44, 1209.
| Characterization of organic coatings on hygroscopic salt particles and their atmospheric impactsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitF2lt7o%3D&md5=56bc4e6b1c6a85d296dda2c927c38d9dCAS |