Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

The iron CLAW

Mike Harvey
+ Author Affiliations
- Author Affiliations

National Institute of Water and Atmospheric Research, PO Box 14-901, Kilbirnie, Wellington, New Zealand. Email: m.harvey@niwa.co.nz

Environmental Chemistry 4(6) 396-399 https://doi.org/10.1071/EN07066
Submitted: 14 September 2007  Accepted: 28 October 2007   Published: 6 December 2007

Environmental context. A ‘climate stabilising’ feedback system known as the CLAW hypothesis, which involves the phytoplankton driven influence on cloud reflectivity through the cycling of sulfur was proposed ~20 years ago, and because of its complexity, it remains unproven today. Since the CLAW proposal, experiments that have added iron to the ocean have proven that iron can significantly limit phytoplankton productivity and can also affect the marine sulfur cycle in a complex manner. Because of a range of possible feedbacks between iron, sulfur and climate, it is likely that future advances in understanding the CLAW hypothesis will require a comprehensive process-based description that can be tested in fully coupled earth-system models.


Acknowledgements

The work is supported by the New Zealand Foundation for Research, Science and Technology contract CO1X0703 – Drivers and Mitigation of Global Change. The author thanks reviewers for helpful suggestions.


References


[1]   R. J. Charlson , J. E. Lovelock , M. O. Andreae , S. G. Warren , Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 1987 , 326,  655.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[2]   G. E. Shaw , Biologically controlled thermostasis involving the sulfur cycle. Clim. Change 1983 , 5,  297.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[3]   SOLAS Scientific Steering Committee SOLAS Science Plan and Implementation Strategy. Report No. 50 2004 (IGBP Secretariat: Stockholm).

[4]   G. P. Ayers , J. P. Ivey , R. W. Gillett , Coherence between seasonal cycles of dimethylsulfide, methanesulfonate, and sulfate in Marine Air. Nature 1991 , 349,  404.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[5]   R. Boers , G. P. Ayers , J. L. Gras , Coherence between seasonal variation in satellite-derived cloud optical depth and boundary layer CCN concentrations at a mid-latitude Southern Hemisphere station. Tellus B 1994 , 46,  123.
        | Crossref |  open url image1

[6]   G. P. Ayers , J. L. Gras , Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air. Nature 1991 , 353,  834.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[7]   S. S. Yum , J. G. Hudson , Wintertime/summertime contrasts of cloud condensation nuclei and cloud microphysics over the Southern Ocean. J. Geophys. Res. 2004 , 109(D6),  D06204.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   M. A. Wetzel , L. L. Stowe , Satellite-observed patterns in stratus microphysics, aerosol optical thickness, and shortwave radiative forcing. J. Geophys. Res. 1999 , 104(D24),  31287.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   R. A. Cropp , A. J. Gabric , G. H. McTainsh , R. D. Braddock , N. Tindale , Coupling between ocean biota and atmospheric aerosols: Dust, dimethylsulphide, or artefact? Global Biogeochem. Cy. 2005 , 19,  GB4002.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   S. M. Vallina , R. Simó , S. Gassó , C. de Boyer-Montégut , E. del Río , E. Jurado , J. Dachs , Analysis of a potential “solar radiation dose-dimethylsulfide-cloud condensation nuclei” link from globally mapped seasonal correlations. Global Biogeochem. Cy. 2007 , 21,  GB2004.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[11]   J. R. Gunson , S. A. Spall , T. R. Anderson , A. Jones , I. J. Totterdell , M. J. Woodage , Climate sensitivity to ocean dimethylsulphide emissions. Geophys. Res. Lett. 2006 , 33,  L07701.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   Horne J. W. (director), The Iron Claw 1941 (Columbia Pictures: USA).

[13]   J. H. Martin , Glacial–interglacial CO2 change: the iron hypothesis. Paleoceanography 1990 , 5,  1.
         open url image1

[14]   H. J. W. de Baar , P. W. Boyd , K. H. Coale , M. R. Landry , A. Tsuda , P. Assmy , et al. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. J. Geophys. Res. 2005 , 110,  C09S16.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[15]   S. M. Vallina , R. Simó , Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science 2007 , 315,  506.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[16]   S. M. Turner , M. J. Harvey , C. S. Law , P. D. Nightingale , P. S. Liss , Iron-induced changes in oceanic sulfur biogeochemistry. Geophys. Res. Lett. 2004 , 31,  L14307.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   M. P. Gall , P. W. Boyd , J. Hall , K. A. Safi , H. Chang , Phytoplankton processes. Part 1: community structure during the Southern Ocean Iron RElease Experiment (SOIREE). Deep-sea Res. II 2001 , 48,  2551.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   P. W. Boyd , T. Jickells , C. S. Law , S. Blain , E. A. Boyle , K. O. Buesseler , K. H. Coale , J. J. Cullen , et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 2007 , 315,  612.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[19]   Y. Le Clainche , M. Levasseur , A. Vézina , R.-C. Bouillon , A. Merzouk , S. Michaud , M. Scarratt , C. S. Wong , et al. Modeling analysis of the effect of iron enrichment on dimethyl sulfide dynamics in the NE Pacific (SERIES experiment). J. Geophys. Res. 2006 , 111(C1),  C01011.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   S. Blain , B. Quéguiner , L. Armand , S. Belviso , B. Bombled , L. Bopp , A. Bowie , C. Brunet , et al. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature 2007 , 446,  1070.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[21]   E. W. Wolff , H. Fischer , F. Fundel , U. Ruth , B. Twarloh , G. C. Littot , R. Mulvaney , R. Röthlisberger , et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 2006 , 440,  491.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[22]   F. Joos , J. Sarmiento , U. Siegenthaler , Estimates of the effect of Southern Ocean iron fertilisation on atmospheric CO2 concentrations. Nature 1991 , 349,  772.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[23]   A. J. Watson , D. C. E. Bakker , A. J. Ridgwell , P. W. Boyd , C. S. Law , Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 2000 , 407,  730.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[24]   K. E. Kohfeld , C. Le Quéré , S. P. Harrison , R. F. Anderson , Role of marine biology in glacial–interglacial CO2 cycles. Science 2005 , 308,  74.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[25]   M. R. Legrand , R. J. Delmas , R. J. Charlson , Climate forcing implications from Vostok ice-core sulphate data. Nature 1988 , 334,  418.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[26]   M. Legrand , S. C. Feniet , E. S. Saltzman , C. Germain , N. I. Barkov , V. N. Petrov , Ice-core record of oceanic emissions of dimethylsulphide during the last climate cycle. Nature 1991 , 350,  144.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[27]   N. Meskhidze , W. L. Chameides , A. Nenes , G. Chen , Iron mobilisation in mineral dust: can anthropogenic SO2 emissions affect ocean productivity. Geophys. Res. Lett. 2003 , 30,  2085.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   D. S. Mackie , J. M. Peat , G. H. McTainsh , P. W. Boyd , K. A. Hunter , Soil abrasion and eolian dust production: Implications for iron partitioning and solubility. Geochem. Geophy. Geosy. 2006 , 7,
         open url image1

[29]   M. J. Behrenfeld , R. T. O'Malley , D. A. Siegel , C. R. McClain , J. L. Sarmiento , G. C. Feldman , A. J. Milligan , P. G. Falkowski , et al. Climate-driven trends in contemporary ocean productivity. Nature 2006 , 444,  752.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[30]   Lovelock J., The Revenge of Gaia 2007 (Penguin Books Ltd: London).

[31]   G. E. Shaw , R. L. Benner , W. Cantrell , A. D. Clarke , On the regulation of climate: A sulfate particle feedback loop involving deep convection. Clim. Change 1998 , 39,  23.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[32]   S. M. Vallina , R. Simo , M. Manizza , Weak response of oceanic dimthylsulfide to upper mixing shoaling induced by global warming. Proc. Natl. Acad. Sci. USA 2007 , 104,  16004.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[33]   O. W. Wingenter , K. B. Haase , M. Zeigler , D. R. Blake , F. S. Rowland , B. C. Sive , A. Paulino , R. Thyrhaug , et al. Unexpected consequences of increasing CO2 and ocean acidity on marine production of DMS and CH2ClI: Potential climate impacts. Geophys. Res. Lett. 2007 , 34,  L05710.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[34]   G. P. Ayers , J. M. Cainey , R. W. Gillett , J. P. Ivey , Atmospheric sulphur and cloud condensation nuclei in marine air in the Southern Hemisphere. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1997 , 352,  203.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   Y. J. Yoon , P. Brimblecombe , Modelling the contribution of sea salt and dimethyl sulfide derived aerosol to marine CCN. Atmos. Chem. Phys. 2002 , 2(1),  17.
         open url image1

[36]   P. W. Boyd , S. C. Doney , Modelling regional responses by marine pelagic ecosystems to global climate change. Geophys. Res. Lett. 2002 , 29,  1806.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[37]   R. G. Zepp , T. V. Callaghan , D. J. Erickson , Effects of enhanced solar ultraviolet radiation on biogeochemical cycles. J. Photochem. Photobiol. B 1998 , 46,  69.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[38]   P. F. Caffrey , W. A. Hoppel , J. J. Shi , A one-dimensional sectional aerosol model integrated with mesoscale meteorological data to study marine boundary layer aerosol dynamics. J. Geophys. Res. 2006 , 111(D24),  D24201.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[39]   N. Meskhidze , A. Nenes , Phytoplankton and cloudiness in the southern ocean. Science 2006 , 314,  1419.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[40]   O. W. Wingenter , N. Meskhidze , A. Nenes , Isoprene, cloud droplets, and phytoplankton. Science 2007 , 317,  42b.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[41]   J. Stefels , M. Steinke , S. Turner , G. Malin , S. Belviso , Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 2007 , 83,  245.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[42]   C. Le Quéré , S. P. Harrison , I. C. Prentice , E. T. Buitenhuis , O. Aumont , L. Bopp , H. Claustre , L. Cotrim Da Cunha , et al. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob. Change Biol. 2005 , 11,  2016.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1