Sea-salt particles and the CLAW hypothesis
Michael H. SmithSchool of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK. Email: m.h.smith@leeds.ac.uk
Environmental Chemistry 4(6) 391-395 https://doi.org/10.1071/EN07071
Submitted: 27 September 2007 Accepted: 4 November 2007 Published: 6 December 2007
Environmental context. When proposing that dimethyl sulfide (DMS) releases from phytoplankton had a role in regulating the global climate, the potential parallel influences of sea spray aerosols on climate were largely disregarded. Over the intervening 20 years, scientific studies have clearly demonstrated a substantial role for sea spray particles in modifying cloud properties and influencing global sulfur cycling, diminishing the significance of the DMS-based CLAW mechanism.
Acknowledgements
I offer grateful thanks to all the colleagues, too numerous to cite individually, who have contributed to the work described above. A special acknowledgement is due to Martin Hill, whose innovative and incisive solutions to technical and scientific problems made a vital, and occasionally unrecognised, contribution to the field work. Also, I am grateful for the helpful comments made by the reviewers of this paper.
[1]
R. J. Charlson ,
J. E. Lovelock ,
M. O. Andreae ,
S. G. Warren ,
Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate.
Nature 1987
, 326, 655.
| Crossref | GoogleScholarGoogle Scholar |
[2]
G. E. Shaw ,
Bio-controlled thermostasis involving the sulfur cycle.
Clim. Change 1983
, 5, 297.
| Crossref | GoogleScholarGoogle Scholar |
[3]
G. Ayers ,
J. M. Cainey ,
The CLAW hypothesis: a review of the major developments.
Environ. Chem. 2007
, 4, 366.
| Crossref | GoogleScholarGoogle Scholar |
[4]
J. E. Lovelock ,
Hands up for the Gaia hypothesis.
Nature 1990
, 344, 100.
| Crossref | GoogleScholarGoogle Scholar |
[5]
[6]
A. Slingo ,
Can plankton control climate?
Nature 1988
, 336, 421.
| Crossref | GoogleScholarGoogle Scholar |
[7]
S. E. Schwartz ,
Are global cloud albedo and climate controlled by marine phytoplankton?
Nature 1988
, 336, 441.
| Crossref | GoogleScholarGoogle Scholar |
[8]
F. Raes ,
Entrainment of free tropospheric aerosols as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer.
J. Geophys. Res. 1995
, 100, 2893.
| Crossref | GoogleScholarGoogle Scholar |
[9]
A. D. Clarke ,
J. L. Varner ,
F. Eisele ,
R. L. Maudlin ,
D. Tanner ,
M. Litchy ,
Particle production in the remote marine atmosphere: cloud outflow and subsidence during ACE-1.
J. Geophys. Res. 1998
, 103(D13), 16397.
| Crossref | GoogleScholarGoogle Scholar |
[10]
D. C. Blanchard ,
R. J. Cipriano ,
Biological regulation of climate.
Nature 1987
, 330, 526.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[11]
R. J. Charlson ,
S. G. Warren ,
Biological regulation of climate – reply.
Nature 1987
, 330, 526.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[12]
[13]
A. H. Woodcock ,
Smaller salt particles in oceanic air and bubble behaviour in sea.
J. Geophys. Res. 1972
, 77, 5316.
[14]
A. Mészáros ,
K. Vissy, Concentration, size distribution and chemical nature of atmospheric aerosol particles in remote oceanic areas.
J. Aerosol Sci. 1974
, 5, 101.
| Crossref | GoogleScholarGoogle Scholar |
[15]
R. J. Cipriano ,
E. C. Monahan ,
P. A. Bowyer ,
D. K. Woolf ,
Marine condensation nucleus generation inferred from whitecap simulation tank results.
J. Geophys. Res. 1987
, 92, 6569.
[16]
A. H. Woodcock ,
Salt nuclei in marine air as a function of altitude and wind force.
J. Meteorol. 1953
, 10, 362.
[17]
C. D. O’Dowd ,
S. G. Jennings ,
M. H. Smith ,
W. Cooke ,
A high temperature volatility technique for determination of atmospheric aerosol composition.
J. Aerosol Sci. 1992
, 23, 905.
| Crossref | GoogleScholarGoogle Scholar |
[18]
C. D. O’Dowd ,
M. H. Smith ,
S. G. Jennings ,
Submicron particle, radon and soot carbon characteristics over the North-east Atlantic.
J. Geophys. Res. 1993
, 98, 1123.
[19]
C. D. O’Dowd ,
M. H. Smith ,
Physico-chemical properties of aerosols over the North-east Atlantic: evidence for wind-speed-related submicron sea-salt aerosol production.
J. Geophys. Res. 1993
, 98, 1137.
[20]
H. Sievering ,
J. Boatman ,
J. Galloway ,
W. Keene ,
Y. Kim ,
M. Luria ,
J. Ray ,
Hetereogeneous sulphur conversion in sea-salt aerosol particles: the role of aerosol water content and size distribution.
Atmos. Environ. 1991
, 25, 1479.
[21]
E. M. Mårtensson ,
E. D. Nilsson ,
G. De Leeuw ,
L. H. Cohen ,
H.-C. Hansson ,
Laboratory simulations and parameterization of the primary marine aerosol production.
J. Geophys. Res. 2003
, 108, 4297.
| Crossref | GoogleScholarGoogle Scholar |
[22]
M. Geever ,
C. D. O’Dowd ,
J. S. van Ekeren ,
R. Flanagan ,
E. D. Nilsson ,
G. De Leeuw ,
U. Rannik ,
Submicron sea spray fluxes.
Geophys. Res. Lett. 2005
, 32, L15810.
| Crossref | GoogleScholarGoogle Scholar |
[23]
A. D. Clarke ,
S. R. Owens ,
J. Zhou ,
An ultrafine sea-salt flux from breaking waves: implications for cloud condensation nuclei in the remote marine atmosphere.
J. Geophys. Res. 2006
, 111, D06202.
| Crossref | GoogleScholarGoogle Scholar |
[24]
A. M. Middlebrook ,
D. M. Murphy ,
D. S. Thomson ,
Observations of organic material in individual marine particles at Cape Grim during the First Aerosol Characterization Experiment (ACE-1).
J. Geophys. Res. 1998
, 103, 16475.
| Crossref | GoogleScholarGoogle Scholar |
[25]
F. Cavalli ,
M. C. Facchini ,
S. Decesari ,
M. Mircea ,
L. Emblicia ,
S. Fuzzi ,
D. Ceburnis ,
Y. J. Yoon ,
et al. Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic.
J. Geophys. Res. 2004
, 109, D24215.
| Crossref | GoogleScholarGoogle Scholar |
[26]
C. D. O’Dowd ,
J. A. Lowe ,
M. H. Smith ,
A. D. Kaye ,
The relative importance of non-sea-salt sulphate and sea-salt aerosol to the marine cloud condensation nuclei population: an improved multi-component aerosol–cloud droplet parameterization.
Q. J. R. Meteorol. Soc. 1999
, 125, 1295.
| Crossref | GoogleScholarGoogle Scholar |
[27]
A. Jones ,
D. L. Roberts ,
A. Slingo ,
A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols.
Nature 1994
, 370, 450.
| Crossref | GoogleScholarGoogle Scholar |
[28]
D. A. Hegg ,
S. A. Rutledge ,
P. V. Hobbs ,
A numerical model for sulphur chemistry in warm-frontal rainbands.
J. Geophys. Res. 1984
, 89, 7133.
[29]
O. Boucher ,
U. Lohmann ,
The sulfate–CCN–cloud albedo effect – a sensitivity study with 2 general-circulation models.
Tellus B 1995
, 47, 281.
| Crossref | GoogleScholarGoogle Scholar |
[30]
S. Ghan ,
G. Guzman ,
H. Abdul-Razzak ,
Competition between sea salt and sulfate particles as cloud condensation nuclei.
J. Atmos. Sci. 1998
, 55, 3340.
| Crossref | GoogleScholarGoogle Scholar |
[31]
C. D. O’Dowd ,
J. A. Lowe ,
M. H. Smith ,
Observations and modelling of aerosol growth in marine stratocumulus.
Atmos. Environ. 1999
, 33, 3053.
| Crossref | GoogleScholarGoogle Scholar |
[32]
C. Fountoukis ,
A. Nenes ,
Continued development of a cloud droplet formation parameterization for global climate models.
J. Geophys. Res. 2005
, 110, D11212.
| Crossref | GoogleScholarGoogle Scholar |
[33]
S. Ghosh ,
S. Osborne ,
M. H. Smith ,
On the importance of cumulus penetration on the microphysical and optical properties of stratocumulus clouds.
Atmos. Chem. Phys. 2005
, 5, 755.
[34]
G. J. Roelofs ,
P. Stier ,
J. Feichter ,
E. Vignati ,
J. Wilson ,
Aerosol activation and cloud processing in the global aerosol-climate model ECHAM5-HAM.
Atmos. Chem. Phys. 2006
, 6, 2389.
[35]
J. R. Pierce ,
P. J. Adams ,
Global evaluation of CCN formation by direct emission of sea salt and growth of ultrafine sea salt.
J. Geophys. Res. 2006
, 111, D06203.
| Crossref | GoogleScholarGoogle Scholar |
[36]
S. Ghosh ,
M. H. Smith ,
A. Rap ,
Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies.
Philos. T. Roy. Soc. A 2007
, 365, 2659.
| Crossref | GoogleScholarGoogle Scholar |
[37]
C. D. O’Dowd ,
J. A. Lowe ,
M. H. Smith ,
Coupling of sea-salt and sulphate interactions and its impact on cloud droplet concentration predictions.
Geophys. Res. Lett. 1999
, 26, 1311.
| Crossref | GoogleScholarGoogle Scholar |
[38]
C. D. O’Dowd ,
J. A. Lowe ,
N. A. Clegg ,
M. H. Smith ,
S. L. Clegg ,
Modelling heterogeneous sulphate production in maritime stratiform clouds.
J. Geophys. Res. 2000
, 105, 7143.
| Crossref | GoogleScholarGoogle Scholar |
[39]
S. M. Vallina ,
R. Simó ,
Strong relationship between DMS and the solar radiation dose over the global surface ocean.
Science 2007
, 315, 506.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[40]
Y. J. Yoon ,
P. Brimblecombe ,
Modelling the contribution of sea salt and dimethyl sulfide-derived aerosol to marine CCN.
Atmos. Chem. Phys. 2002
, 2, 17.
[41]
J. S. Reid ,
H. H. Jonsson ,
M. H. Smith ,
A. Smirnov ,
Evolution of the vertical profile and flux of large sea-salt particles in a coastal zone.
J. Geophys. Res. 2001
, 106, 12039.
| Crossref | GoogleScholarGoogle Scholar |
[42]
S. Norris ,
I. Brooks ,
G. de Leeuw ,
M. H. Smith ,
M. Moerman ,
J. Lingard ,
Eddy covariance measurements of sea spray particles over the Atlantic Ocean.
Atmos. Chem. Phys. Discuss. 2007
, 7, 13243.
[43]
E. D. Nilsson ,
E. M. Mårtensson ,
J. S. van Ekeren ,
G. de Leeuw ,
M. Moerman ,
C. D. O’Dowd ,
Primary marine aerosol emissions: size-resolved eddy covariance measurements with estimates of the sea salt and organic carbon fractions.
Atmos. Chem. Phys. Discuss. 2007
, 7, 13345.
[44]
[45]
C. D. O’Dowd ,
G. McFiggans ,
D. J. Creasey ,
L. Pirjola ,
C. Hoell ,
M. H. Smith ,
B. J. Allen ,
J. M. C. Plane ,
et al. On the photochemical production of new particles in the coastal boundary layer.
Geophys. Res. Lett. 1999
, 26, 1707.
| Crossref | GoogleScholarGoogle Scholar |
[46]
M. Kulmala ,
K. Hameri ,
P. P. Aalto ,
J. M. Makela ,
L. Pirjola ,
E. D. Nilsson ,
G. Buzorius ,
U. Rannik ,
et al. Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR).
Tellus B 2001
, 53, 324.
| Crossref | GoogleScholarGoogle Scholar |
[47]
A. Alam ,
J. P. Shi ,
R. M. Harrison ,
Observations of new particle formation in urban air.
J. Geophys. Res. 108, 4093.
| Crossref | GoogleScholarGoogle Scholar |
[48]
C. D. O’Dowd ,
T. Hoffman ,
Coastal new particle formation: a review of the current state-of-the-art.
Environ. Chem. 2005
, 2, 245.
| Crossref | GoogleScholarGoogle Scholar |