Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Sea-salt particles and the CLAW hypothesis

Michael H. Smith
+ Author Affiliations
- Author Affiliations

School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK. Email: m.h.smith@leeds.ac.uk

Environmental Chemistry 4(6) 391-395 https://doi.org/10.1071/EN07071
Submitted: 27 September 2007  Accepted: 4 November 2007   Published: 6 December 2007

Environmental context. When proposing that dimethyl sulfide (DMS) releases from phytoplankton had a role in regulating the global climate, the potential parallel influences of sea spray aerosols on climate were largely disregarded. Over the intervening 20 years, scientific studies have clearly demonstrated a substantial role for sea spray particles in modifying cloud properties and influencing global sulfur cycling, diminishing the significance of the DMS-based CLAW mechanism.


Acknowledgements

I offer grateful thanks to all the colleagues, too numerous to cite individually, who have contributed to the work described above. A special acknowledgement is due to Martin Hill, whose innovative and incisive solutions to technical and scientific problems made a vital, and occasionally unrecognised, contribution to the field work. Also, I am grateful for the helpful comments made by the reviewers of this paper.


References


[1]   R. J. Charlson , J. E. Lovelock , M. O. Andreae , S. G. Warren , Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 1987 , 326,  655.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[2]   G. E. Shaw , Bio-controlled thermostasis involving the sulfur cycle. Clim. Change 1983 , 5,  297.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[3]   G. Ayers , J. M. Cainey , The CLAW hypothesis: a review of the major developments. Environ. Chem. 2007 , 4,  366.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   J. E. Lovelock , Hands up for the Gaia hypothesis. Nature 1990 , 344,  100.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[5]   Prospero J. M., The chemical and physical properties of marine aerosols. An introduction, in Chemistry of Marine Water and Sediments (Eds A. Gianguzza, E. Pellizzetti, S. Sammarano) 2002 (Springer-Verlag: Berlin).

[6]   A. Slingo , Can plankton control climate? Nature 1988 , 336,  421.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[7]   S. E. Schwartz , Are global cloud albedo and climate controlled by marine phytoplankton? Nature 1988 , 336,  441.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   F. Raes , Entrainment of free tropospheric aerosols as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer. J. Geophys. Res. 1995 , 100,  2893.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   A. D. Clarke , J. L. Varner , F. Eisele , R. L. Maudlin , D. Tanner , M. Litchy , Particle production in the remote marine atmosphere: cloud outflow and subsidence during ACE-1. J. Geophys. Res. 1998 , 103(D13),  16397.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   D. C. Blanchard , R. J. Cipriano , Biological regulation of climate. Nature 1987 , 330,  526.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[11]   R. J. Charlson , S. G. Warren , Biological regulation of climate – reply. Nature 1987 , 330,  526.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[12]   Lewis E. R., Schwartz S. E., Sea Salt Aerosol Production 2004 (American Geophysical Union: Washington, DC).

[13]   A. H. Woodcock , Smaller salt particles in oceanic air and bubble behaviour in sea. J. Geophys. Res. 1972 , 77,  5316.
         open url image1

[14]   A. Mészáros , K. Vissy, Concentration, size distribution and chemical nature of atmospheric aerosol particles in remote oceanic areas. J. Aerosol Sci. 1974 , 5,  101.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[15]   R. J. Cipriano , E. C. Monahan , P. A. Bowyer , D. K. Woolf , Marine condensation nucleus generation inferred from whitecap simulation tank results. J. Geophys. Res. 1987 , 92,  6569.
         open url image1

[16]   A. H. Woodcock , Salt nuclei in marine air as a function of altitude and wind force. J. Meteorol. 1953 , 10,  362.
         open url image1

[17]   C. D. O’Dowd , S. G. Jennings , M. H. Smith , W. Cooke , A high temperature volatility technique for determination of atmospheric aerosol composition. J. Aerosol Sci. 1992 , 23,  905.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   C. D. O’Dowd , M. H. Smith , S. G. Jennings , Submicron particle, radon and soot carbon characteristics over the North-east Atlantic. J. Geophys. Res. 1993 , 98,  1123.
         open url image1

[19]   C. D. O’Dowd , M. H. Smith , Physico-chemical properties of aerosols over the North-east Atlantic: evidence for wind-speed-related submicron sea-salt aerosol production. J. Geophys. Res. 1993 , 98,  1137.
         open url image1

[20]   H. Sievering , J. Boatman , J. Galloway , W. Keene , Y. Kim , M. Luria , J. Ray , Hetereogeneous sulphur conversion in sea-salt aerosol particles: the role of aerosol water content and size distribution. Atmos. Environ. 1991 , 25,  1479.
         open url image1

[21]   E. M. Mårtensson , E. D. Nilsson , G. De Leeuw , L. H. Cohen , H.-C. Hansson , Laboratory simulations and parameterization of the primary marine aerosol production. J. Geophys. Res. 2003 , 108,  4297.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[22]   M. Geever , C. D. O’Dowd , J. S. van Ekeren , R. Flanagan , E. D. Nilsson , G. De Leeuw , U. Rannik , Submicron sea spray fluxes. Geophys. Res. Lett. 2005 , 32,  L15810.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[23]   A. D. Clarke , S. R. Owens , J. Zhou , An ultrafine sea-salt flux from breaking waves: implications for cloud condensation nuclei in the remote marine atmosphere. J. Geophys. Res. 2006 , 111,  D06202.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[24]   A. M. Middlebrook , D. M. Murphy , D. S. Thomson , Observations of organic material in individual marine particles at Cape Grim during the First Aerosol Characterization Experiment (ACE-1). J. Geophys. Res. 1998 , 103,  16475.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[25]   F. Cavalli , M. C. Facchini , S. Decesari , M. Mircea , L. Emblicia , S. Fuzzi , D. Ceburnis , Y. J. Yoon , et al. Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic. J. Geophys. Res. 2004 , 109,  D24215.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[26]   C. D. O’Dowd , J. A. Lowe , M. H. Smith , A. D. Kaye , The relative importance of non-sea-salt sulphate and sea-salt aerosol to the marine cloud condensation nuclei population: an improved multi-component aerosol–cloud droplet parameterization. Q. J. R. Meteorol. Soc. 1999 , 125,  1295.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[27]   A. Jones , D. L. Roberts , A. Slingo , A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols. Nature 1994 , 370,  450.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   D. A. Hegg , S. A. Rutledge , P. V. Hobbs , A numerical model for sulphur chemistry in warm-frontal rainbands. J. Geophys. Res. 1984 , 89,  7133.
         open url image1

[29]   O. Boucher , U. Lohmann , The sulfate–CCN–cloud albedo effect – a sensitivity study with 2 general-circulation models. Tellus B 1995 , 47,  281.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[30]   S. Ghan , G. Guzman , H. Abdul-Razzak , Competition between sea salt and sulfate particles as cloud condensation nuclei. J. Atmos. Sci. 1998 , 55,  3340.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[31]   C. D. O’Dowd , J. A. Lowe , M. H. Smith , Observations and modelling of aerosol growth in marine stratocumulus. Atmos. Environ. 1999 , 33,  3053.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[32]   C. Fountoukis , A. Nenes , Continued development of a cloud droplet formation parameterization for global climate models. J. Geophys. Res. 2005 , 110,  D11212.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[33]   S. Ghosh , S. Osborne , M. H. Smith , On the importance of cumulus penetration on the microphysical and optical properties of stratocumulus clouds. Atmos. Chem. Phys. 2005 , 5,  755.
         open url image1

[34]   G. J. Roelofs , P. Stier , J. Feichter , E. Vignati , J. Wilson , Aerosol activation and cloud processing in the global aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys. 2006 , 6,  2389.
         open url image1

[35]   J. R. Pierce , P. J. Adams , Global evaluation of CCN formation by direct emission of sea salt and growth of ultrafine sea salt. J. Geophys. Res. 2006 , 111,  D06203.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[36]   S. Ghosh , M. H. Smith , A. Rap , Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies. Philos. T. Roy. Soc. A 2007 , 365,  2659.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[37]   C. D. O’Dowd , J. A. Lowe , M. H. Smith , Coupling of sea-salt and sulphate interactions and its impact on cloud droplet concentration predictions. Geophys. Res. Lett. 1999 , 26,  1311.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[38]   C. D. O’Dowd , J. A. Lowe , N. A. Clegg , M. H. Smith , S. L. Clegg , Modelling heterogeneous sulphate production in maritime stratiform clouds. J. Geophys. Res. 2000 , 105,  7143.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[39]   S. M. Vallina , R. Simó , Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science 2007 , 315,  506.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[40]   Y. J. Yoon , P. Brimblecombe , Modelling the contribution of sea salt and dimethyl sulfide-derived aerosol to marine CCN. Atmos. Chem. Phys. 2002 , 2,  17.
         open url image1

[41]   J. S. Reid , H. H. Jonsson , M. H. Smith , A. Smirnov , Evolution of the vertical profile and flux of large sea-salt particles in a coastal zone. J. Geophys. Res. 2001 , 106,  12039.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[42]   S. Norris , I. Brooks , G. de Leeuw , M. H. Smith , M. Moerman , J. Lingard , Eddy covariance measurements of sea spray particles over the Atlantic Ocean. Atmos. Chem. Phys. Discuss. 2007 , 7,  13243.
         open url image1

[43]   E. D. Nilsson , E. M. Mårtensson , J. S. van Ekeren , G. de Leeuw , M. Moerman , C. D. O’Dowd , Primary marine aerosol emissions: size-resolved eddy covariance measurements with estimates of the sea salt and organic carbon fractions. Atmos. Chem. Phys. Discuss. 2007 , 7,  13345.
         open url image1

[44]   Lowenstein J. H., The production of warm rain in shallow cumulus clouds 2007, Ph.D. thesis, University of Leeds.

[45]   C. D. O’Dowd , G. McFiggans , D. J. Creasey , L. Pirjola , C. Hoell , M. H. Smith , B. J. Allen , J. M. C. Plane , et al. On the photochemical production of new particles in the coastal boundary layer. Geophys. Res. Lett. 1999 , 26,  1707.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[46]   M. Kulmala , K. Hameri , P. P. Aalto , J. M. Makela , L. Pirjola , E. D. Nilsson , G. Buzorius , U. Rannik , et al. Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR). Tellus B 2001 , 53,  324.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[47]   A. Alam , J. P. Shi , R. M. Harrison , Observations of new particle formation in urban air. J. Geophys. Res. 108,  4093.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[48]   C. D. O’Dowd , T. Hoffman , Coastal new particle formation: a review of the current state-of-the-art. Environ. Chem. 2005 , 2,  245.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1