Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

A modified aerosol–cloud–climate feedback hypothesis

Caroline Leck A C and E. Keith Bigg A B
+ Author Affiliations
- Author Affiliations

A Department of Meteorology, Stockholm University, 10691 Stockholm, Sweden.

B Present address: 12 Wills Ave., Castle Hill, NSW 2154, Australia.

C Corresponding author. Email: lina@misu.su.se

Environmental Chemistry 4(6) 400-403 https://doi.org/10.1071/EN07061
Submitted: 6 September 2007  Accepted: 4 November 2007   Published: 6 December 2007

Environmental context. Problems with the aerosol–cloud–climate feedback process known as the ‘CLAW’ hypothesis are discussed and a modified scheme that poses a stronger possible link between marine biology, cloud properties and climate than is provided by dimethyl sulfide alone is proposed.


References


[1]   G. E. Shaw , Bio-controlled thermostasis involving the sulfur cycle. Clim. Change 1983 , 5,  297.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[2]   R. J. Charlson , J. E. Lovelock , M. O. Andreae , S. G. Warren , Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 1987 , 326,  655.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[3]   V. Ramanathan , R. D. Cess , E. F. Harrison , P. Minnis , B. R. Barkstrom , E. Ahmad , D. Hartmann , Cloud-radiative forcing and climate: results from the Earth Radiation Budget Experiment. Science 1989 , 243,  57.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[4]   J. Stefels , M. Steinke , S. Turner , G. Malin , S. Belviso , Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modeling. Global Biogeochem. Cy. 2007 , 83,  245.
         open url image1

[5]   A. J. Gabric , B. Ou , P. Matrai , A. C. Hirst , The simulated response of dimethylsulfide production in the Arctic Ocean to global warming. Tellus B 2005 , 57,  391.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[6]   A. J. Gabric , R. Cropp , T. Hirst , H. Marchant , The sensitivity of dimethyl sulfide production to simulated climate change in the eastern Antarctic Southern Ocean. Tellus B 2003 , 55,  966.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[7]   S. Kloster , K. D. Six , J. Feichter , E. Maier-Reimer , E. Roeckner , P. Wetzel , P. Stier , M. Esch , Response of dimethylsulfide (DMS) in the ocean and atmosphere to global warming. J. Geophys. Res. 2007 , 112,  G03005.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   J. Sciare , N. Mihalopoulos , F. J. Dentener , Interannual variability of atmospheric dimethylsulfide in the southern Indian Ocean. J. Geophys. Res. 2000 , 105,  26369.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   S. M. Vallina , R. Simo , Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science 2007 , 315,  506.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[10]   IPCC, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller) 2007, Ch. 2, pp. 129–234 (Cambridge University Press: New York).

[11]   S. Belviso , L. Bopp , C. Moulin , J. C. Orr , T. R. Anderson , O. Aumont , S. Chu , S. Elliott , et al. Comparison of global climatological maps of seasurface dimethylsulfide. Global Biogeochem. Cy. 2004 , 18,  GB3013.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   J. M. Intrieri , C. W. Fairall , M. D. Shupe , P. O. G. Persson , E. L. Andreas , P. S. Guest , R. E. Moritz , An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res. 2002 , 107,  8039.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   M. Tjernström , The summer Arctic boundary layer during the Arctic Ocean Experiment (AOE-2001). Bound.Lay. Meteorol. 2005 , 117,  5.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[14]   D. S. Covert , A. Wiedensohler , P. P. Aalto , J. Heintzenberg , P. H. McMurry , C. Leck , Aerosol number size distributions from 3 to 500-nm diameter in the arctic marine boundary layer during summer and autumn. Tellus B 1996 , 48,  197.
         open url image1

[15]   A. J. Gabric , J. M. Shephard , J. M. Knight , G. Jones , A. J. Trevena , Correlations between the satellite-derived seasonal cycles of phytoplankton biomass and aerosol optical depth in the Southern Ocean: evidence for the influence of sea ice. Global Biogeochem. Cy. 2005 , 19,  GB4018.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[16]   L. Pirjola , C. D. O’Dowd , I. M. Brooks , M. Kulmala , Can new particle formation occur in the clean marine boundary layer? J. Geophys. Res. 2000 , 105(D21),  26531.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   M. Karl , A. Gross , C. Leck , L. Pirjola , Intercomparison of dimethysulfide oxidation mechanisms for the marine boundary layer: gaseous and particulate sulfur constituents. J. Geophys. Res. 2007 , 112,  D15304.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   A. D. Clarke , D. Davis , V. N. Kapustin , F. Eisele , G. Chen , I. Paluch , D. Lenschow , A. R. Bandy , et al. Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources. Science 1998 , 282,  89.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[19]   D. S. Covert , V. N. Kapustin , P. K. Quinn , T. S. Bates , New particle formation in the marine boundary layer. J. Geophys. Res. 1992 , 97,  20581.
         open url image1

[20]   C. D. O’Dowd , G. MacFiggans , D. J. Creasey , L. Pirjola , C. Hoell , M. H. Smith , B. J. Allan , J. M. C. Plane , et al. On the photochemical production of new particles in the coastal boundary layer. Geophys. Res. Lett. 1999 , 26,  1707.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[21]   C. Leck , E. K. Bigg , Aerosol production over remote marine areas – a new route. Geophys. Res. Lett. 1999 , 26,  3577.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[22]   F. Raes , Entrainment of free tropospheric aerosols as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer. J. Geophys. Res. 1995 , 100,  2893.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[23]   G. Shaw , On the regulation of climate: a sulfate particle feedback loop involving deep convection. Clim. Change 1998 , 39,  23.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[24]   E. K. Bigg , C. Leck , E. D. Nilsson , Sudden changes in aerosol and gas concentrations in the central Arctic marine boundary layer – causes and consequences. J. Geophys. Res. 2001 , 106(D23),  32167.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[25]   K. Aranami , S. Tsunogai , Seasonal and regional comparison of oceanic dimethylsulfide in the northern North Pacific: dilution effects on its concentration during winter. J. Geophys. Res. 2004 , 109,  D12303.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[26]   H. E. Gerber , W. A. Hoppel , T. A. Wojciechowski , Experimental verification of the theoretical relationship between size and critical supersaturation of salt nuclei. J. Atmos. Sci. 1977 , 34,  1836.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[27]   J. L. Gras , Cloud condensation nuclei over the Southern Ocean. Geophys. Res. Lett. 1990 , 17,  1565.
         open url image1

[28]   G. P. Ayers , J. P. Ivey , R. W. Gillett , Coherence between seasonal cycles of dimethylsulphide, metanesulphonate and sulphate in marine air. Nature 1991 , 349,  404.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[29]   Lewis E. R., Schwartz S. E., Sea salt production: Mechanisms, methods, measurements and models – A critical review, in Geophysical Monograph Series, Vol. 152 2004 (AGU: Washington, DC).

[30]   E. M. Mårtensson , E. D. Nilsson , G. de Leeuw , L. H. Cohen , H.-C. Hansson , Laboratory simulations and parameterization of the primary marine aerosol production. J. Geophys. Res. 2003 , 108,  4297.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[31]   A. D. Clarke , Submicrometer sea salt in the remote marine environment. J. Aerosol Sci. 1999 , 30,  S3.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[32]   F. P. Parungo , C. T. Nagamoto , J. M. Harris , Temporal and spatial variations of marine aerosols over the Atlantic Ocean. Atmos. Res. 1986 , 20,  23.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[33]   C. Leck , E. K. Bigg , Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer. Tellus B 2005 , 57,  305.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[34]   C. Leck , E. K. Bigg , Comparison of sources and nature of the tropical aerosol with the summer high Arctic aerosol. Tellus B 2007 , OnlineEarly Article.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   D. M. Murphy , D. S. Thomson , A. M. Middlebrook , M. E. Schein , In situ single particle characterization at Cape Grim. J. Geophys. Res. 1998 , 103,  16485.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[36]   E. K. Bigg , C. Leck , The composition of fragments of bubbles bursting at the ocean surface. J. Geophys. Res. 2007 , in press.
         open url image1

[37]   C. Leck , E. K. Bigg , Source and evolution of the marine aerosol – A new perspective. Geophys. Res. Lett. 2005 , 32,  L19803.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[38]   E. K. Bigg , Sources, nature and influence on climate of marine airborne particles. Environ. Chem. 2007 , 4,  155.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[39]   E. K. Bigg , C. Leck , L. Tranvik , Particulates of the surface microlayer of open water in the central Arctic Ocean in summer. Mar. Chem. 2004 , 91,  131.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[40]   J. A. Fuhrman , Marine viruses and their biogeochemical and ecological effects. Nature 1999 , 399,  541.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[41]   M. L. Wells , E. D. Goldberg , Colloid aggregation in seawater. Mar. Chem. 1993 , 41,  353.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[42]   M. V. Orellana , P. Verdugo , Ultraviolet light blocks the organic carbon exchange between the dissolved phase and the gel phase in the ocean. Limnol. Oceanogr. 2003 , 48,  1618.
         open url image1

[43]   W.-C. Chin , M. V. Orellana , P. Verdugo , Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 1998 , 391,  568.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[44]   N. Meskhidze , A. Nenes , Phytoplankton and cloudiness in the Southern Ocean. Science 2006 , 314,  1419.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[45]   U. Lohmann , C. Leck , Importance of submicron surface active organic aerosols for pristine Arctic clouds. Tellus B 2005 , 57,  261.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1