A modified aerosol–cloud–climate feedback hypothesis
Caroline Leck A C and E. Keith Bigg A BA Department of Meteorology, Stockholm University, 10691 Stockholm, Sweden.
B Present address: 12 Wills Ave., Castle Hill, NSW 2154, Australia.
C Corresponding author. Email: lina@misu.su.se
Environmental Chemistry 4(6) 400-403 https://doi.org/10.1071/EN07061
Submitted: 6 September 2007 Accepted: 4 November 2007 Published: 6 December 2007
Environmental context. Problems with the aerosol–cloud–climate feedback process known as the ‘CLAW’ hypothesis are discussed and a modified scheme that poses a stronger possible link between marine biology, cloud properties and climate than is provided by dimethyl sulfide alone is proposed.
[1]
G. E. Shaw ,
Bio-controlled thermostasis involving the sulfur cycle.
Clim. Change 1983
, 5, 297.
| Crossref | GoogleScholarGoogle Scholar |
[2]
R. J. Charlson ,
J. E. Lovelock ,
M. O. Andreae ,
S. G. Warren ,
Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate.
Nature 1987
, 326, 655.
| Crossref | GoogleScholarGoogle Scholar |
[3]
V. Ramanathan ,
R. D. Cess ,
E. F. Harrison ,
P. Minnis ,
B. R. Barkstrom ,
E. Ahmad ,
D. Hartmann ,
Cloud-radiative forcing and climate: results from the Earth Radiation Budget Experiment.
Science 1989
, 243, 57.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[4]
J. Stefels ,
M. Steinke ,
S. Turner ,
G. Malin ,
S. Belviso ,
Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modeling.
Global Biogeochem. Cy. 2007
, 83, 245.
[5]
A. J. Gabric ,
B. Ou ,
P. Matrai ,
A. C. Hirst ,
The simulated response of dimethylsulfide production in the Arctic Ocean to global warming.
Tellus B 2005
, 57, 391.
| Crossref | GoogleScholarGoogle Scholar |
[6]
A. J. Gabric ,
R. Cropp ,
T. Hirst ,
H. Marchant ,
The sensitivity of dimethyl sulfide production to simulated climate change in the eastern Antarctic Southern Ocean.
Tellus B 2003
, 55, 966.
| Crossref | GoogleScholarGoogle Scholar |
[7]
S. Kloster ,
K. D. Six ,
J. Feichter ,
E. Maier-Reimer ,
E. Roeckner ,
P. Wetzel ,
P. Stier ,
M. Esch ,
Response of dimethylsulfide (DMS) in the ocean and atmosphere to global warming.
J. Geophys. Res. 2007
, 112, G03005.
| Crossref | GoogleScholarGoogle Scholar |
[8]
J. Sciare ,
N. Mihalopoulos ,
F. J. Dentener ,
Interannual variability of atmospheric dimethylsulfide in the southern Indian Ocean.
J. Geophys. Res. 2000
, 105, 26369.
| Crossref | GoogleScholarGoogle Scholar |
[9]
S. M. Vallina ,
R. Simo ,
Strong relationship between DMS and the solar radiation dose over the global surface ocean.
Science 2007
, 315, 506.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[10]
[11]
S. Belviso ,
L. Bopp ,
C. Moulin ,
J. C. Orr ,
T. R. Anderson ,
O. Aumont ,
S. Chu ,
S. Elliott ,
et al. Comparison of global climatological maps of seasurface dimethylsulfide.
Global Biogeochem. Cy. 2004
, 18, GB3013.
| Crossref | GoogleScholarGoogle Scholar |
[12]
J. M. Intrieri ,
C. W. Fairall ,
M. D. Shupe ,
P. O. G. Persson ,
E. L. Andreas ,
P. S. Guest ,
R. E. Moritz ,
An annual cycle of Arctic surface cloud forcing at SHEBA.
J. Geophys. Res. 2002
, 107, 8039.
| Crossref | GoogleScholarGoogle Scholar |
[13]
M. Tjernström ,
The summer Arctic boundary layer during the Arctic Ocean Experiment (AOE-2001).
Bound.Lay. Meteorol. 2005
, 117, 5.
| Crossref | GoogleScholarGoogle Scholar |
[14]
D. S. Covert ,
A. Wiedensohler ,
P. P. Aalto ,
J. Heintzenberg ,
P. H. McMurry ,
C. Leck ,
Aerosol number size distributions from 3 to 500-nm diameter in the arctic marine boundary layer during summer and autumn.
Tellus B 1996
, 48, 197.
[15]
A. J. Gabric ,
J. M. Shephard ,
J. M. Knight ,
G. Jones ,
A. J. Trevena ,
Correlations between the satellite-derived seasonal cycles of phytoplankton biomass and aerosol optical depth in the Southern Ocean: evidence for the influence of sea ice.
Global Biogeochem. Cy. 2005
, 19, GB4018.
| Crossref | GoogleScholarGoogle Scholar |
[16]
L. Pirjola ,
C. D. O’Dowd ,
I. M. Brooks ,
M. Kulmala ,
Can new particle formation occur in the clean marine boundary layer?
J. Geophys. Res. 2000
, 105(D21), 26531.
| Crossref | GoogleScholarGoogle Scholar |
[17]
M. Karl ,
A. Gross ,
C. Leck ,
L. Pirjola ,
Intercomparison of dimethysulfide oxidation mechanisms for the marine boundary layer: gaseous and particulate sulfur constituents.
J. Geophys. Res. 2007
, 112, D15304.
| Crossref | GoogleScholarGoogle Scholar |
[18]
A. D. Clarke ,
D. Davis ,
V. N. Kapustin ,
F. Eisele ,
G. Chen ,
I. Paluch ,
D. Lenschow ,
A. R. Bandy ,
et al. Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources.
Science 1998
, 282, 89.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[19]
D. S. Covert ,
V. N. Kapustin ,
P. K. Quinn ,
T. S. Bates ,
New particle formation in the marine boundary layer.
J. Geophys. Res. 1992
, 97, 20581.
[20]
C. D. O’Dowd ,
G. MacFiggans ,
D. J. Creasey ,
L. Pirjola ,
C. Hoell ,
M. H. Smith ,
B. J. Allan ,
J. M. C. Plane ,
et al. On the photochemical production of new particles in the coastal boundary layer.
Geophys. Res. Lett. 1999
, 26, 1707.
| Crossref | GoogleScholarGoogle Scholar |
[21]
C. Leck ,
E. K. Bigg ,
Aerosol production over remote marine areas – a new route.
Geophys. Res. Lett. 1999
, 26, 3577.
| Crossref | GoogleScholarGoogle Scholar |
[22]
F. Raes ,
Entrainment of free tropospheric aerosols as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer.
J. Geophys. Res. 1995
, 100, 2893.
| Crossref | GoogleScholarGoogle Scholar |
[23]
G. Shaw ,
On the regulation of climate: a sulfate particle feedback loop involving deep convection.
Clim. Change 1998
, 39, 23.
| Crossref | GoogleScholarGoogle Scholar |
[24]
E. K. Bigg ,
C. Leck ,
E. D. Nilsson ,
Sudden changes in aerosol and gas concentrations in the central Arctic marine boundary layer – causes and consequences.
J. Geophys. Res. 2001
, 106(D23), 32167.
| Crossref | GoogleScholarGoogle Scholar |
[25]
K. Aranami ,
S. Tsunogai ,
Seasonal and regional comparison of oceanic dimethylsulfide in the northern North Pacific: dilution effects on its concentration during winter.
J. Geophys. Res. 2004
, 109, D12303.
| Crossref | GoogleScholarGoogle Scholar |
[26]
H. E. Gerber ,
W. A. Hoppel ,
T. A. Wojciechowski ,
Experimental verification of the theoretical relationship between size and critical supersaturation of salt nuclei.
J. Atmos. Sci. 1977
, 34, 1836.
| Crossref | GoogleScholarGoogle Scholar |
[27]
J. L. Gras ,
Cloud condensation nuclei over the Southern Ocean.
Geophys. Res. Lett. 1990
, 17, 1565.
[28]
G. P. Ayers ,
J. P. Ivey ,
R. W. Gillett ,
Coherence between seasonal cycles of dimethylsulphide, metanesulphonate and sulphate in marine air.
Nature 1991
, 349, 404.
| Crossref | GoogleScholarGoogle Scholar |
[29]
[30]
E. M. Mårtensson ,
E. D. Nilsson ,
G. de Leeuw ,
L. H. Cohen ,
H.-C. Hansson ,
Laboratory simulations and parameterization of the primary marine aerosol production.
J. Geophys. Res. 2003
, 108, 4297.
| Crossref | GoogleScholarGoogle Scholar |
[31]
A. D. Clarke ,
Submicrometer sea salt in the remote marine environment.
J. Aerosol Sci. 1999
, 30, S3.
| Crossref | GoogleScholarGoogle Scholar |
[32]
F. P. Parungo ,
C. T. Nagamoto ,
J. M. Harris ,
Temporal and spatial variations of marine aerosols over the Atlantic Ocean.
Atmos. Res. 1986
, 20, 23.
| Crossref | GoogleScholarGoogle Scholar |
[33]
C. Leck ,
E. K. Bigg ,
Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer.
Tellus B 2005
, 57, 305.
| Crossref | GoogleScholarGoogle Scholar |
[34]
C. Leck ,
E. K. Bigg ,
Comparison of sources and nature of the tropical aerosol with the summer high Arctic aerosol.
Tellus B 2007
,
OnlineEarly Article.
| Crossref | GoogleScholarGoogle Scholar |
[35]
D. M. Murphy ,
D. S. Thomson ,
A. M. Middlebrook ,
M. E. Schein ,
In situ single particle characterization at Cape Grim.
J. Geophys. Res. 1998
, 103, 16485.
| Crossref | GoogleScholarGoogle Scholar |
[36]
E. K. Bigg ,
C. Leck ,
The composition of fragments of bubbles bursting at the ocean surface.
J. Geophys. Res. 2007
,
in press.
[37]
C. Leck ,
E. K. Bigg ,
Source and evolution of the marine aerosol – A new perspective.
Geophys. Res. Lett. 2005
, 32, L19803.
| Crossref | GoogleScholarGoogle Scholar |
[38]
E. K. Bigg ,
Sources, nature and influence on climate of marine airborne particles.
Environ. Chem. 2007
, 4, 155.
| Crossref | GoogleScholarGoogle Scholar |
[39]
E. K. Bigg ,
C. Leck ,
L. Tranvik ,
Particulates of the surface microlayer of open water in the central Arctic Ocean in summer.
Mar. Chem. 2004
, 91, 131.
| Crossref | GoogleScholarGoogle Scholar |
[40]
J. A. Fuhrman ,
Marine viruses and their biogeochemical and ecological effects.
Nature 1999
, 399, 541.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[41]
M. L. Wells ,
E. D. Goldberg ,
Colloid aggregation in seawater.
Mar. Chem. 1993
, 41, 353.
| Crossref | GoogleScholarGoogle Scholar |
[42]
M. V. Orellana ,
P. Verdugo ,
Ultraviolet light blocks the organic carbon exchange between the dissolved phase and the gel phase in the ocean.
Limnol. Oceanogr. 2003
, 48, 1618.
[43]
W.-C. Chin ,
M. V. Orellana ,
P. Verdugo ,
Spontaneous assembly of marine dissolved organic matter into polymer gels.
Nature 1998
, 391, 568.
| Crossref | GoogleScholarGoogle Scholar |
[44]
N. Meskhidze ,
A. Nenes ,
Phytoplankton and cloudiness in the Southern Ocean.
Science 2006
, 314, 1419.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[45]
U. Lohmann ,
C. Leck ,
Importance of submicron surface active organic aerosols for pristine Arctic clouds.
Tellus B 2005
, 57, 261.
| Crossref | GoogleScholarGoogle Scholar |