Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Assessment of molecular diversity in landraces of bread wheat (Triticum aestivum L.) held in an ex situ collection with Diversity Arrays Technology (DArT™)

B. J. Stodart A C , M. C. Mackay B and H. Raman A D
+ Author Affiliations
- Author Affiliations

A NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia.

B Australian Winter Cereals Collection, Tamworth Agricultural Institute, Tamworth, NSW 2340, Australia.

C Current address: School of Agricultural and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.

D Corresponding author. Email: harsh.raman@dpi.nsw.gov.au

Australian Journal of Agricultural Research 58(12) 1174-1182 https://doi.org/10.1071/AR07010
Submitted: 10 January 2007  Accepted: 27 July 2007   Published: 17 December 2007

Abstract

Diversity Arrays Technology (DArT™) was evaluated as a tool for determining molecular diversity of wheat landraces held within the Australian Winter Cereals Collection (AWCC). Initially, a set of 44 wheat landraces was evaluated with 256 DArT markers. The dataset was compared with the results obtained using 16 amplified fragment length polymorphism (AFLP) primer combinations and 63 simple sequence repeat (SSR) markers, mapped on the 21 chromosomes, from a previous study. The DArT markers exhibited a strong positive correlation with AFLP and SSR, with each marker type distinguishing similar relationships among the 44 landrace accessions. The DArT markers exhibited a higher polymorphic information content than AFLP, and were comparable with that obtained with SSR. Three hundred and fifty-five DArT markers were then used to evaluate genetic diversity among 705 wheat landrace accessions from within the AWCC, chosen to represent 5 world regions. DArT analysis was capable of distinguishing accessions from different geographic regions, and suggested that accessions originating from Nepal represent a unique gene pool within the collection. A statistical resampling of DArT loci indicated that 10–20 loci were enough to distinguish the maximum molecular diversity present within the collection. This research demonstrates the efficacy of the DArT platform as a tool for efficient examination of wheat diversity. As an ex situ germplasm repository, the AWCC contains wheat accessions of high genetic diversity, from genetically differentiated collection sites, even though diversity was under-represented in some countries represented in the repository.

Additional keywords: genetic diversity.


References


Agapow PM, Burt A (2001) Indices of multilocus linkage disequilibrium. Molecular Ecology Notes 1, 101–102.
Crossref | GoogleScholarGoogle Scholar | open url image1

Balfourier F, Roussel V, Strelchenko P, Exbrayat-Vinson F, Sourdille P, Boutet G, Koenig J, Ravel C, Mitrofanova O, Beckert M, Charmet G (2007) A worldwide bread wheat core collection arrayed in a 384-well plate. Theoretical and Applied Genetics 114, 1265–1275.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bernatchez L, Duchesne P (2000) Individual-based genotype analysis in studies of parentage and population assignment, how many loci, how many alleles? Canadian Journal of Fisheries and Aquatic Sciences 57, 1–12.
Crossref | GoogleScholarGoogle Scholar | open url image1

Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18, 117–143.
Crossref | GoogleScholarGoogle Scholar | open url image1

Coart E, Van glabeke S, Petit RJ, Van Bockstaele E, Roldán-Ruiz I (2005) Range wide versus local patterns of genetic diversity in hornbeam (Carpinus betulus L.). Conservation Genetics 6, 259–273.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cornuet JM, Aulagnier S, Lek S, Franck P, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153, 1989–2000.
PubMed |
open url image1

De Riek J, Calsyn E, Everaert I, Van Bockstaele E, De Loose M (2001) AFLP based alternatives for the assessment of distinctness, uniformity and stability of sugarbeet varieties. Theoretical and Applied Genetics 103, 1245–1265. open url image1

Donini P, Law JR, Koebner RMD, Reeves JC, Cooke RJ (2000) Temporal trends in the diversity of UK wheat. Theoretical and Applied Genetics 100, 912–917.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dreisigacker S, Zhang P, Warburton ML, Skovmand B, Hoisington D, Melchinger AE (2005) Genetic diversity among and within CIMMYT wheat landrace accessions investigated with SSRs and implications for plant genetic resource management. Crop Science 45, 653–661. open url image1

Ellwood SR, D’Souza NK, Kamphuis LG, Burgess TI, Nair RM, Oliver RP (2006) SSR analysis of the Medicago truncatula SARDI core collection reveals substantial diversity and unusual genotype dispersal throughout the Mediterranean basin. Theoretical and Applied Genetics 112, 977–983.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Eujayl I, Sorrells M, Baum M, Wolters P, Powell W (2001) Assessment of genotypic variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica 119, 39–43.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fjellheim S, Rognli OA (2005) Molecular diversity of local Norwegian meadow fescue (Festuca pratensis Huds.) populations and Nordic cultivars—consequences for management and utilisation. Theoretical and Applied Genetics 111, 640–650.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Fu YB, Diederichsen A, Richards KW, Peterson G (2002) Genetic diversity within a range of cultivars and landraces of flax (Linus usitatissimum L.) as revealed by RAPDs. Genetic Resources and Crop Evolution 49, 167–174.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fu YB, Peterson GW, Scoles G, Rossnagel B, Schoen DJ, Richards KW (2003) Allelic diversity changes in 96 Canadian oat cultivars released from 1886 to 2001. Crop Science 43, 1989–1995. open url image1

Gilbert JE, Lewis RV, Wilkinson MJ, Caligari PDS (1999) Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theoretical and Applied Genetics 98, 1125–1131.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hammer Ø , Harper DAT , Ryan PD (2001) PAST: palaeontological statistics software package for education and data analysis. Palaeontol Electron 4: http://palaeo-electronica.org/2001_1/past/issue1_01.htm.

Harlan JR (1971) Agricultural origins: centres and noncentres. Science 174, 468–474.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity Arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Research 29, e25.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kihara H (1983) Origin and history of ‘Daruma’, a parental variety of Norin 10. In ‘Proceedings 6th International Wheat Genetics Symposium’. 28 November–3 December. (Ed. S Sakamoto) pp. 13–19. (Kyoto University Press: Kyoto, Japan)

Koebner RMD, Donini P, Reeves JC, Cooke RJ, Law JR (2003) Temporal flux in the morpholofical and molecular diversity of UK barley. Theoretical and Applied Genetics 106, 550–558.
PubMed |
open url image1

Li TX, Wang J, Bai Y, Sun X, Lu Z (2004) A novel method for screening species-specific gDNA probes for species identification. Nucleic Acids Research 32, e45.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Liedloff A (1999) Mantel nonparametric test calculator for Windows Version 2.00. www.terc.csiro.au/profile.asp?ID=LIEDA

Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Molecular Ecology 3, 91–99.
PubMed |
open url image1

Mackay MC (1995) One core collection or many? In ‘Core collections of plant genetic resources’. (Eds T Hodgkin, AHD Brown, ThJL van Hintum, EAV Morales) pp. 199–210. (John Wiley & Sons: Chichester, UK)

Manifesto MM, Schlatter AR, Hopp HE, Suárez HE, Dubcovsky J (2001) Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Science 41, 682–690. open url image1

Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209–220.
PubMed |
open url image1

Marshall DR , Brown AHD (1975) Optimum sampling strategies in genetic conservation. In ‘Crop genetic resources for today and tomorrow’. (Eds OH Frankel, JG Hawkes) (Cambridge University Press: Cambridge, UK)

Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop Science 43, 1235–1248. open url image1

Nakamura T, Yamamori M, Hirano H, Hidaka S, Nagamine T (1995) Production of waxy (amylose free) wheats. Molecular and General Genetics 248, 253–259.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Nei M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70, 3321–3323.
Crossref | PubMed |
open url image1

Neigel JE (1997) A comparison of alternative strategies for estimating gene flow from genetic markers. Annual Review of Ecology and Systematics 28, 105–128.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pardey PG, Koo B, Wright BD, van Dusen ME, Skovmand B, Taba S (2001) Costing the conservation of genetic resources: CIMMYT’s ex-situ maize collection. Crop Science 41, 1286–1299. open url image1

Paull JG, Chalmers KJ, Karakousis A, Kretschmer JM, Manning S, Langridge P (1998) Genetic diversity in Australian wheat varieties and breeding material based on RFLP data. Theoretical and Applied Genetics 96, 435–446.
Crossref | GoogleScholarGoogle Scholar | open url image1

Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theoretical and Applied Genetics 91, 1001–1007.
Crossref | GoogleScholarGoogle Scholar | open url image1

Reif JC, Zhang P, Dreisigacker S, Warburton ML, van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2005) Wheat genetic diversity trends during domestication and breeding. Theoretical and Applied Genetics 110, 859–864.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Reynolds J, Weir BS, Cockerham CC (1983) Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105, 767–779.
PubMed |
open url image1

Röder MS, Plaschke J, König SU, Börner A, Sorrells ME, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Molecular and General Genetics 246, 327–333.
Crossref | PubMed |
open url image1

Roussel V, Koenig J, Bechert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programs. Theoretical and Applied Genetics 108, 920–930.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Singh M, Chabane K, Valkoun J, Blake T (2006) Optimum sample size for estimating gene diversity in wild wheat using AFLP markers. Genetic Resources and Crop Evolution 53, 23–33.
Crossref | GoogleScholarGoogle Scholar | open url image1

Smale M, Reynolds MP, Warburton M, Skovmand B, Trethowan R, Singh RP, Oritz-Monasterio I, Crossa J (2002) Dimensions of diversity in modern spring bread wheat in developing countries from 1965. Crop Science 42, 1766–1779. open url image1

Stodart BJ, Mackay M, Raman H (2005) AFLP and SSR analysis of genetic diversity among landraces of bread wheat (Triticum aestivum L. em. Thell) from different geographic regions. Australian Journal of Agricultural Research 56, 691–697.
Crossref | GoogleScholarGoogle Scholar | open url image1

Stodart BJ, Raman H, Coombes N, Mackay M (2007) Evaluating landraces of bread wheat for tolerance to aluminium under low pH conditions. Genetic Resources and Crop Evolution 54, 759–766.
Crossref | GoogleScholarGoogle Scholar | open url image1

Strelchenko P , Street K , Mitrofanova O , Mackay M , Balfourier F (2005) Genetic diversity among hexaploid wheat landraces with different geographical origins revealed by microsatellites: comparison with AFLP, and RAPD data. In ‘Proceedings of 4th International Crop Science Congress’. Brisbane, Australia, 26 Sept.–1 Oct. 2004. (CD-ROM)

Syvanen M (1999) In search of horizontal gene transfer. Nature Biotechnology 17, 833– .
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Van Cutsem P, du Jardin P, Boutte C, Beauwens T, Jacqmin S, Vekemans X (2003) Distinction between cultivated and wild chicory gene pools using AFLP markers. Theoretical and Applied Genetics 107, 713–718.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Vavilov NI (1926) Centres of origin of cultivated plants. Bulletin of Applied Botany & Plant Breeding, Leningrad 16, 139–248. open url image1

Vekemans X (2002) ‘AFLP-SURV version 1.0.’ Distributed by the author. (Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles: Belgium) Available at: www.ulb.ac.be/sciences/lagev

Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proceedings of the National Academy of Sciences of the United States of America 101, 9915–9920.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Winzeler EA, Castillio-Davis CI, Oshiro G, Liang D, Richards DR, Zhou Y, Hartl DL (2003) Genetic diversity in yeast assessed with whole-genome oligonucleotide arrays. Genetics 163, 79–89.
PubMed |
open url image1

Worland AJ (1986) Gibberellic acid insensitive dwarfing genes in Southern European wheats. Euphytica 35, 857–866.
Crossref | GoogleScholarGoogle Scholar | open url image1

Xia L, Peng K, Yang S, Wenzl P, Carmen de Vicente M, Fregene M, Kilian A (2005) DArT for high-throughput genotyping of Cassava (Manihot esculenta) and its wild relatives. Theoretical and Applied Genetics 110, 1092–1098.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhang XY, Li CW, Wang LF, Wang HM, You GX, Dong YS (2002) An estimation of the minimum number of SSR alleles needed to reveal genetic relationships in wheat varieties. I. Information from large scale planted varieties and cornerstone breeding parents in Chinese wheat improvement and production. Theoretical and Applied Genetics 106, 112–117.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1