Comparative Study of Carbon Force Fields for the Simulation of Carbon Onions
Alireza Aghajamali A B and Amir Karton A BA School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
B Corresponding authors. Email: alireza.aghajamali@uwa.edu.au; amir.karton@uwa.edu.au
Australian Journal of Chemistry 74(10) 709-714 https://doi.org/10.1071/CH21172
Submitted: 21 July 2021 Accepted: 31 August 2021 Published: 7 October 2021
Journal Compilation © CSIRO 2021 Open Access CC BY-NC-ND
Abstract
We evaluate the performance of ten common carbon force fields for the interaction energies in double and triple layered carbon onions. In particular, we consider the C20@C60, C20@C80, C20@C180, C80@C240, C60@C240 and C240@C540 double-layer carbon onions and C60@C240@C540 and C80@C240@C540 triple-layered carbon onions. We consider the following carbon force fields: Tersoff, REBO-II, AIREBO, AIREBO-M, screened versions of Tersoff and REBO-II, LCBOP-I, 2015 and 2020 versions of ReaxFF, and the machine-learning GAP force field. We show that the ReaxFF force fields give the best performance for the interaction energies of the cabon onions relative to density functional theory interaction energies obtained at the PBE0-D3/def2-TZVP level of theory. We proceed to use the ReaxFF-15 force field to explore the interaction energies in a giant ten-layered carbon onion with a C60 core and show that the interaction energy between the outer layer and the inner layers increases linearly with the number of layers in the carbon onion (with a squared correlation coefficient of R2 = 0.9996). This linear increase in the stabilization energy with each consecutive layer may have important thermodynamic consequences for describing the formation and growth of large carbon onions.
Keywords: carbon nano-onions, carbon nanomaterials, fullerenes, machine-learning force fields, empirical force fields, interaction energy.
References
[1] S. Iijima, J. Cryst. Growth 1980, 50, 675.| Crossref | GoogleScholarGoogle Scholar |
[2] Y. V. Butenko, L. Siller, M. R. C. Hunt, in Handbook of Nanophysics: Clusters and Fullerenes (Ed. K. D. Sattler) 2010, pp. 10–15 (CRC Press: Boca Raton, FL.)
[3] A. Krüger, Carbon Materials and Nanotechnology 2010 (Wiley: Hoboken, NJ.)
[4] Y. Wang, J. H. Zhao, S. F. Yu, R. S. Ran, H. S. Huai, K. K. Ostrikov, Y. Y. Hui, Carbon 2013, 64, 230.
| Crossref | GoogleScholarGoogle Scholar |
[5] W. Tian, H. Hu, Y. Wang, P. Li, J. Liu, J. Liu, X. Wang, X. Xu, Z. Li, Q. Zhao,
| Crossref | GoogleScholarGoogle Scholar | 29425027PubMed |
[6] E. G. Bushueva, P. S. Galkin, A. V. Okotrub, L. G. Bulusheva, N. N. Gavrilov, V. L. Kuznetsov, S. I. Moiseekov, Phys. Status Solidi, B Basic Res 2008, 245, 2296.
| Crossref | GoogleScholarGoogle Scholar |
[7] J. K. McDonough, A. I. Frolov, V. Presser, J. Niu, C. H. Miller, T. Ubieto, M. V. Fedorov, Y. Gogotsi, Carbon 2012, 50, 3298.
| Crossref | GoogleScholarGoogle Scholar |
[8] M. Ghosh, S. K. Sonkar, M. Saxena, S. Sarkar, Small 2011, 7, 3170.
| Crossref | GoogleScholarGoogle Scholar | 22012886PubMed |
[9] S. Giordani, J. Bartelmess, M. Frasconi, I. Biondi, S. Cheung, M. Grossi, D. Wu, L. Echegoyen, D. F. O’Shea, J. Mater. Chem. B Mater. Biol. Med 2014, 2, 7459.
| Crossref | GoogleScholarGoogle Scholar | 32261971PubMed |
[10] M. Zeiger, N. Jäckel, V. N. Mochalin, V. Presser, J. Mater. Chem. A Mater. Energy Sustain 2016, 4, 3172.
| Crossref | GoogleScholarGoogle Scholar |
[11] V. Georgakilas, J. A. Perman, J. Tucek, R. Zboril, Chem. Rev. 2015, 115, 4744.
| Crossref | GoogleScholarGoogle Scholar | 26012488PubMed |
[12] D. Ugarte, Nature 1992, 359, 707.
| Crossref | GoogleScholarGoogle Scholar | 11536508PubMed |
[13] B. S. Xu, S.-i. Tanaka, Nanostruct. Mater. 1995, 6, 727.
| Crossref | GoogleScholarGoogle Scholar |
[14] H. E. Troiani, A. Camacho-Bragado, V. Armendariz, J. L. Gardea Torresday, M. J. Yacaman, Chem. Mater. 2003, 15, 1029.
| Crossref | GoogleScholarGoogle Scholar |
[15] T. Gorelik, S. Urban, F. Falk, U. Kaiser, U. Glatzel, Chem. Phys. Lett. 2003, 373, 642.
| Crossref | GoogleScholarGoogle Scholar |
[16] V. L. Kuznetsov, A. L. Chuvilin, Y. V. Butenko, I. Y. Mal’kov, V. M. Titov, Chem. Phys. Lett. 1994, 222, 343.
| Crossref | GoogleScholarGoogle Scholar |
[17] V. L. Kuznetsov, A. L. Chuvilin, E. M. Moroz, V. N. Kolomiichuk, S. K. Shaikhutdinov, Y. V. Butenko, I. Y. Mal’kov, Carbon 1994, 32, 873.
| Crossref | GoogleScholarGoogle Scholar |
[18] S. Tomita, A. Burian, J. C. Dore, D. LeBolloch, M. Fujii, S. Hayashi, Carbon 2002, 40, 1469.
| Crossref | GoogleScholarGoogle Scholar |
[19] Z. Qiao, J. Li, N. Zhao, C. Shi, P. Nash, Scr. Mater. 2006, 54, 225.
| Crossref | GoogleScholarGoogle Scholar |
[20] L. G. Bulusheva, A. V. Okotrub, V. L. Kuznetsov, D. V. Vyalikh, Diamond Relat. Mater. 2007, 16, 1222.
| Crossref | GoogleScholarGoogle Scholar |
[21] J. Xiao, G. Ouyang, P. Liu, C. X. Wang, G. W. Yang, Nano Lett 2014, 14, 3645.
| Crossref | GoogleScholarGoogle Scholar | 24823241PubMed |
[22] T. Cabioc’h, J. C. Girard, M. Jaouen, M. F. Denanot, G. Hug, Europhys. Lett. 1997, 38, 471.
| Crossref | GoogleScholarGoogle Scholar |
[23] E. Thune, T. Cabioc’h, M. Jaouen, F. Bodart, Phys. Rev. B 2003, 68, 115434.
| Crossref | GoogleScholarGoogle Scholar |
[24] C. He, N. Zhao, in Handbook of Nanophysics: Clusters and Fullerenes (Ed. K. D. Sattler) 2010, pp. 1–22 (CRC Press: Boca Raton, FL.)
[25] A. De Vita, G. Galli, A. Canning, R. Car, Appl. Surf. Sci. 1996, 104–105, 297.
| Crossref | GoogleScholarGoogle Scholar |
[26] G. Kern, J. Hafner, Phys. Rev. B 1998, 58, 13167.
| Crossref | GoogleScholarGoogle Scholar |
[27] C.-Z. Wang, K. M. Ho, M. D. Shirk, P. A. Molian, Phys. Rev. Lett. 2000, 85, 4092.
| Crossref | GoogleScholarGoogle Scholar | 11056632PubMed |
[28] F. Fugaciu, H. Hermann, G. Seifert, Phys. Rev. B 1999, 60, 10711.
| Crossref | GoogleScholarGoogle Scholar |
[29] G.-D. Lee, C. Z. Wang, J. Yu, E. Yoon, K. M. Ho, Phys. Rev. Lett. 2003, 91, 265701.
| Crossref | GoogleScholarGoogle Scholar | 14754068PubMed |
[30] S. Grimme, C. Mück-Lichtenfeld, J. Antony, J. Phys. Chem. C 2007, 111, 11199.
| Crossref | GoogleScholarGoogle Scholar |
[31] G. Casella, A. Bagno, G. Saielli, Phys. Chem. Chem. Phys. 2013, 15, 18030.
| Crossref | GoogleScholarGoogle Scholar | 24061574PubMed |
[32] A. J. Stasyuk, O. A. Stasyuk, M. Solà, A. A. Voityuk, J. Phys. Chem. C 2019, 123, 16525.
| Crossref | GoogleScholarGoogle Scholar |
[33] M. A. Hashmi, M. Lein, J. Phys. Chem. C 2018, 122, 2422.
| Crossref | GoogleScholarGoogle Scholar |
[34] J. H. Los, N. Pineau, G. Chevrot, G. Vignoles, J.-M. Leyssale, Phys. Rev. B 2009, 80, 155420.
| Crossref | GoogleScholarGoogle Scholar |
[35] P. Ganesh, P. R. C. Kent, V. Mochalin, J. Appl. Phys. 2011, 110, 073506.
| Crossref | GoogleScholarGoogle Scholar |
[36] J. M. Leyssale, G. L. Vignoles, Chem. Phys. Lett. 2008, 454, 299.
| Crossref | GoogleScholarGoogle Scholar |
[37] D. W. M. Lau, D. G. McCulloch, N. A. Marks, N. R. Madsen, A. V. Rode, Phys. Rev. B 2007, 75, 233408.
| Crossref | GoogleScholarGoogle Scholar |
[38] A. Bródka, T. W. Zerda, A. Burian, Diamond Relat. Mater. 2006, 15, 1818.
| Crossref | GoogleScholarGoogle Scholar |
[39] A. Bródka, A. Burian, S. Tomita, V. Honkimäki, J. Mol. Struct. 2008, 887, 34.
| Crossref | GoogleScholarGoogle Scholar |
[40] J. L. Fogg, A. Aghajamali, J. A. Hinks, S. E. Donnelly, A. A. Shiryaev, N. A. Marks, Nucl. Instrum. Methods Phys. Res., Sect. B 2019, 453, 32.
| Crossref | GoogleScholarGoogle Scholar |
[41] A. Aghajamali, A. A. Shiryaev, N. A. Marks, Astrophys. J. 2021, 916, 85.
| Crossref | GoogleScholarGoogle Scholar |
[42] J. Tersoff, Phys. Rev. Lett. 1988, 61, 2879.
| Crossref | GoogleScholarGoogle Scholar | 10039251PubMed |
[43] L. Pastewka, A. Klemenz, P. Gumbsch, M. Moseler, Phys. Rev. B 2013, 87, 205410.
| Crossref | GoogleScholarGoogle Scholar |
[44] D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, S. B. Sinnott, J. Phys. Condens. Matter 2002, 14, 783.
| Crossref | GoogleScholarGoogle Scholar |
[45] L. Pastewka, P. Pou, R. Pérez, P. Gumbsch, M. Moseler, Phys. Rev. B 2008, 78, 161402.
| Crossref | GoogleScholarGoogle Scholar |
[46] S. J. Stuart, A. B. Tutein, J. A. Harrison, J. Chem. Phys. 2000, 112, 6472.
| Crossref | GoogleScholarGoogle Scholar |
[47] T. C. O’Connor, J. Andzelm, M. O. Robbins, J. Chem. Phys. 2015, 142, 024903.
| Crossref | GoogleScholarGoogle Scholar | 25591383PubMed |
[48] J. H. Los, L. M. Ghiringhelli, E. J. Meijer, A. Fasolino, Phys. Rev. B 2005, 72, 214102.
| Crossref | GoogleScholarGoogle Scholar |
[49] D. W. Brenner, Phys. Rev. B 1990, 42, 9458.
| Crossref | GoogleScholarGoogle Scholar |
[50] S. G. Srinivasan, A. C. T. van Duin, P. Ganesh, J. Phys. Chem. A 2015, 119, 571.
| Crossref | GoogleScholarGoogle Scholar | 25562718PubMed |
[51] A. C. T. van Duin, S. Dasgupta, F. Lorant, W. A. Goddard, J. Phys. Chem. A 2001, 105, 9396.
| Crossref | GoogleScholarGoogle Scholar |
[52] C. Ashraf, A. C. T. van Duin, J. Phys. Chem. A 2017, 121, 1051.
| Crossref | GoogleScholarGoogle Scholar | 28072539PubMed |
[53] B. Damirchi, M. Radue, K. Kanhaiya, H. Heinz, G. M. Odegard, A. C. T. van Duin, J. Phys. Chem. C 2020, 124, 20488.
| Crossref | GoogleScholarGoogle Scholar |
[54] P. Rowe, V. L. Deringer, P. Gasparotto, G. Csányi, A. Michaelides, J. Chem. Phys. 2020, 153, 034702.
| Crossref | GoogleScholarGoogle Scholar | 32716159PubMed |
[55] A. Aghajamali, A. Karton, Chem. Phys. Lett. 2021, 779, 138853.
| Crossref | GoogleScholarGoogle Scholar |
[56] C. Qian, B. McLean, D. Hedman, F. Ding, APL Mater. 2021, 9, 061102.
| Crossref | GoogleScholarGoogle Scholar |
[57] Y. Noël, M. De La Pierre, C. M. Zicovich-Wilson, R. Orlando, R. Dovesi, Phys. Chem. Chem. Phys. 2014, 16, 13390.
| Crossref | GoogleScholarGoogle Scholar | 24879509PubMed |
[58] S. Plimpton, J. Comput. Phys. 1995, 117, 1.
| Crossref | GoogleScholarGoogle Scholar |
[59] A. Stukowski, Model. Simul. Mater. Sci. Eng. 2010, 18, 015012.
| Crossref | GoogleScholarGoogle Scholar |
[60] F. Banhart, P. M. Ajayan, Adv. Mater. 1997, 9, 261.
| Crossref | GoogleScholarGoogle Scholar |