Fabrication of Highly Ordered Ag/TiO2 Nanopore Array as a Self-Cleaning and Recycling SERS Substrate
Yibing XieA School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. Email: ybxie@seu.edu.cn
Australian Journal of Chemistry 74(10) 715-721 https://doi.org/10.1071/CH21142
Submitted: 21 June 2021 Accepted: 10 September 2021 Published: 30 September 2021
Abstract
Silver nanoparticles deposited on a titania nanopore array (Ag/TiO2 NPA) has been designed as a surface-enhanced Raman scattering (SERS) substrate for sensitive and recycling application of organic molecule detection. A TiO2 NPA was fabricated by a surface oxidization reaction of a titanium sheet by a double anodization process. A Ag/TiO2 NPA was then formed by depositing silver nanoparticles onto the TiO2 NPA by a cycling chemical reduction deposition process. The Ag/TiO2 NPA has a uniform mono-layer dispersion of Ag nanoparticles with a size of 30–50 nm on TiO2 nanopores with a diameter of 100–110 nm. The Ag/TiO2 NPA SERS substrate could facilitate interfacial adsorption of Rhodamine 6G (R6G), which achieves a sensitive detection limit of 10−8 M R6G through SERS spectrum measurement. The Ag/TiO2 NPA SERS substrate achieves an analytical enhancement factor value of 2.6 × 105. The Ag/TiO2 NRA could promote the UV light-excited photocatalytic degradation reaction of R6G adsorbed on its surface which gives rise to a refreshed Ag/TiO2 NRA under UV irradiation for 60 min and accordingly behave as a self-cleaning and recycling SERS substrate. The Ag/TiO2 NPA exhibits a much higher R6G degradation reaction rate constant (0.05764 min−1) than the TiO2 NPA (0.02600 min−1), indicating its superior photocatalytic activity and self-cleaning activity. The refreshed Ag/TiO2 NPA was able to be recycled for the Raman detection of R6G, maintaining a high stability, reproducibility, and cyclability. The highly ordered Ag/TiO2 NPA with well controlled Ag nanoparticle dispersion and TiO2 nanopore shape could act as a suitable SERS substrate for recycling and self-cleaning application for stable and sensitive molecule detection.
Keywords: SERS substrate, Ag-TiO2, nanotube array, analytical enhancement factor, molecule detection, self-cleaning, recycling, photocatalytic degradation.
References
[1] K. Geetha, T. N. Rekha, M. Umadevi, B. J. M. Rajkumar, G. V. Sathe, P. Vanelle, T. Terme, O. Khoumeri, Aust. J. Chem. 2016, 69, 76.| Crossref | GoogleScholarGoogle Scholar |
[2] P. A. Mosier-Boss, Nanomaterials 2017, 7, 142.
| Crossref | GoogleScholarGoogle Scholar |
[3] Y. Xie, Y. Mu, Electrochim. Acta 2021, 391, 138953.
| Crossref | GoogleScholarGoogle Scholar |
[4] C. Ruan, Y. Xie, RSC Adv. 2020, 10, 37631.
| Crossref | GoogleScholarGoogle Scholar |
[5] Y. Wang, Y. Xie, J. Alloys Compd. 2020, 824, 153936.
| Crossref | GoogleScholarGoogle Scholar |
[6] C.-H. Lai, G.-A. Wang, T.-K. Ling, T.-J. Wang, P.-k. Chiu, Y.-F. C. Chau, C.-C. Huang, H.-P. Chiang, Sci. Rep. 2017, 7, 5446.
| Crossref | GoogleScholarGoogle Scholar | 28710494PubMed |
[7] P. Li, C. Ruan, J. Xu, Y. Xie, Electrochim. Acta 2020, 330, 135334.
| Crossref | GoogleScholarGoogle Scholar |
[8] C. Ruan, P. Li, J. Xu, Y. Xie, Prog. Org. Coat. 2020, 139, 105455.
| Crossref | GoogleScholarGoogle Scholar |
[9] C. Zhang, C. Lia, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, B. Man, Sens. Actuators B Chem. 2018, 258, 163.
| Crossref | GoogleScholarGoogle Scholar |
[10] V. Amendola, R. Pilot, M. Frasconi, O. M. Marago, M. A. Iati, J. Phys. Condens. Matter 2017, 29, 203002.
| Crossref | GoogleScholarGoogle Scholar | 28426435PubMed |
[11] X. Jiang, Y. Chen, J. Du, X. Li, Y. Shen, M. Yang, X. Han, L. Yang, B. Zhao, J. Raman Spectrosc. 2018, 49, 1257.
| Crossref | GoogleScholarGoogle Scholar |
[12] J. Kim, Y. Jang, N.-J. Kim, H. Kim, G.-C. Yi, Y. Shin, M. H. Kim, S. Yoon, Front Chem. 2019, 7, 582.
| Crossref | GoogleScholarGoogle Scholar | 31482089PubMed |
[13] C. Yang, P. Liang, L. Tang, Y. Zhou, Y. Cao, Y. Wu, D. Zhang, Q. Dong, J. Huang, P. He, Appl. Surf. Sci. 2018, 436, 367.
| Crossref | GoogleScholarGoogle Scholar |
[14] G. Demirel, R. L. M. Gieseking, R. Ozdemir, S. Kahmann, M. A. Loi, G. C. Schatz, A. Facchetti, H. Usta, Nat. Commun. 2019, 10, 5502.
| Crossref | GoogleScholarGoogle Scholar | 31796731PubMed |
[15] Y. Bu, K. Liu, Y. Hu, Y. V. Kaneti, A. Brioude, X. Jiang, H. Wang, A. Yu, Microchim. Acta 2017, 184, 2805.
| Crossref | GoogleScholarGoogle Scholar |
[16] H. Lim, D. Kim, G. Kwon, H.-J. Kim, J. You, J. Kim, M. Eguchi, A. K. Nanjundan, J. Na, Y. Yamauchi, J. Phys. Chem. C 2020, 124, 23730.
| Crossref | GoogleScholarGoogle Scholar |
[17] S. Santhoshkumar, E. Murugan, Appl. Surf. Sci. 2021, 553, 149544.
| Crossref | GoogleScholarGoogle Scholar |
[18] D. Kim, J. Kim, J. Henzie, Y. Ko, H. Lim, G. Kwon, J. Na, H.-J. Kim, Y. Yamauchi, J. You, Chem. Eng. J. 2021, 419, 129445.
| Crossref | GoogleScholarGoogle Scholar |
[19] L. Ma, Q. Zhang, J. Li, X. Lu, C. Gao, P. Song, L. Xia, Materials 2021, 14, 922.
| Crossref | GoogleScholarGoogle Scholar | 33672047PubMed |
[20] J. Xu, C. Ruan, P. Li, Y. Mu, Y. Xie, Electrochim. Acta 2020, 340, 135950.
| Crossref | GoogleScholarGoogle Scholar |
[21] Y. Xie, Y. Wang, Electrochim. Acta 2020, 364, 137224.
| Crossref | GoogleScholarGoogle Scholar |
[22] Y. Mu, C. Ruan, P. Li, J. Xu, Y. Xie, Electrochim. Acta 2020, 338, 135881.
| Crossref | GoogleScholarGoogle Scholar |
[23] H. T. Phan, A. J. Haes, J. Phys. Chem. C 2018, 122, 14846.
| Crossref | GoogleScholarGoogle Scholar |
[24] A. D. Shutov, Z. Yi, J. Wang, A. M. Sinyukov, Z. He, C. Tang, J. Chen, E. J. Ocola, J. Laane, A. V. Sokolov, D. V. Voronine, M. O. Scully, ACS Photonics 2018, 5, 4960.
| Crossref | GoogleScholarGoogle Scholar |
[25] Y. Wang, C. Yan, L. Chen, Y. Zhang, J. Yang, Nanomaterials 2017, 7, 159.
| Crossref | GoogleScholarGoogle Scholar |
[26] X. Wang, W. Shi, S. Wang, H. Zhao, J. Lin, Z. Yang, M. Chen, L. Guo, J. Am. Chem. Soc. 2019, 141, 5856.
| Crossref | GoogleScholarGoogle Scholar | 30895783PubMed |
[27] Y. Xie, J. Electrochem. Energy Convers. Storage 2021, 18, 031007.
| Crossref | GoogleScholarGoogle Scholar |
[28] J. Xu, Y. Xie, J. Power Sources 2021, 493, 229685.
| Crossref | GoogleScholarGoogle Scholar |
[29] Y. Xie, Y. Chen, J. Mater. Sci. 2021, 56, 10135.
| Crossref | GoogleScholarGoogle Scholar |
[30] Y. Xie, Chem. Pap. 2021, 75, 1831.
| Crossref | GoogleScholarGoogle Scholar |
[31] J. Dong, J. Huang, A. Wang, G. V. Biesold-McGee, X. Zhang, S. Gao, S. Wang, Y. Lai, Z. Lin, Nano Energy 2020, 71, 104579.
| Crossref | GoogleScholarGoogle Scholar |
[32] N. Filippin, J. Castillo-Seoane, M. Carmen Lopez-Santos, C. T. Rojas, K. Ostrikov, A. Barranco, J. R. Sanchez-Valencia, A. Borras, ACS Appl. Mater. Interface 2020, 12, 50721.
| Crossref | GoogleScholarGoogle Scholar |
[33] X. Wang, Z. Wang, M. Zhang, X. Jiang, Y. Wang, J. Lv, G. He, Z. Sun, J. Alloys Compd. 2017, 725, 1166.
| Crossref | GoogleScholarGoogle Scholar |
[34] Y. Wang, M. Zhang, H. Yu, Y. Zuo, J. Gao, G. He, Z. Sun, Appl. Catal. B 2019, 252, 174.
| Crossref | GoogleScholarGoogle Scholar |
[35] Y. Xie, J. Polym. Eng. 2021, 41, 137.
| Crossref | GoogleScholarGoogle Scholar |
[36] Y. Xie, J. Nano Res. 2020, 65, 1.
| Crossref | GoogleScholarGoogle Scholar |
[37] Y. Xie, Nano 2020, 15, 2050152.
| Crossref | GoogleScholarGoogle Scholar |
[38] J. Yang, G. Song, L. Zhou, X. Wang, L. You, J. Li, Appl. Surf. Sci. 2021, 539, 147744.
| Crossref | GoogleScholarGoogle Scholar |
[39] Y. F. Wang, S. Ma, H. Yu, Y. Liu, J. Gao, L. Yang, M. Zhang, G. He, Z. Q. Sun, Nanotechnology 2021, 32, 075708.
| Crossref | GoogleScholarGoogle Scholar |
[40] W. X. Wei, D. Yu, Q. L. Huang, Spectrochim. Acta Part A 2020, 243, 118793.
| Crossref | GoogleScholarGoogle Scholar |
[41] N. Singh, J. Prakash, M. Misra, A. Sharma, R. K. Gupta, ACS Appl. Mater. Interface 2017, 9, 28495.
| Crossref | GoogleScholarGoogle Scholar |
[42] J. Singh, A. K. Manna, R. K. Soni, J. Mater. Sci. Mater. Electron. 2019, 30, 16478.
| Crossref | GoogleScholarGoogle Scholar |
[43] Y. Lin, Y.-J. Zhang, W.-M. Yang, J.-C. Dong, F.-R. Fan, Y. Zhao, H. Zhang, N. Bodappa, X.-D. Tian, Z.-L. Yang, G. D. Stucky, Z.-Q. Tian, J.-F. Li, Appl. Mater. Today 2019, 14, 224.
| Crossref | GoogleScholarGoogle Scholar |
[44] O. Secundino-Sánchez, J. Diaz-Reyes, J. Sánchez-Ramírez, J. L. Pérez, Rev. Mex. Fis. 2019, 65, 459.
| Crossref | GoogleScholarGoogle Scholar |
[45] C. Van der Horst, B. Silwana, E. Iwuoha, V. Somerset, Anal. Lett. 2021, 48, 1.
[46] M. Höglund, J. Garemark, M. Nero, T. Willhammar, S. Popov, L. A. Berglund, Chem. Mater. 2021, 33, 3736.
| Crossref | GoogleScholarGoogle Scholar | 34054216PubMed |
[47] K. Daoudi, M. Gaidi, S. Columbus, Biointerface Res. Appl. Chem. 2020, 10, 5670.
| Crossref | GoogleScholarGoogle Scholar |
[48] W. Wang, Q. Sang, M. Yang, J. Du, L. Yang, X. Jiang, X. Han, B. Zhao, Sci. Total Environ. 2020, 702, 134956.
| Crossref | GoogleScholarGoogle Scholar | 31710852PubMed |
[49] W. Song, Y. Wang, B. Zhao, J. Phys. Chem. C 2007, 111, 12786.
| Crossref | GoogleScholarGoogle Scholar |
[50] J. Yang, L. Zhou, X.-Y. Wang, G. Song, L.-J. You, J.-M. Li, Colloids Surf. A 2020, 584, 124013.
| Crossref | GoogleScholarGoogle Scholar |
[51] H. Mazlumoglu, M. Yilmaz, Phys. Chem. Chem. Phys. 2021, 23, 13396.
| Crossref | GoogleScholarGoogle Scholar | 34105556PubMed |
[52] L. Yang, Q. Sang, J. Du, M. Yang, X. Li, Y. Shen, X. Han, X. Jiang, B. Zhao, Phys. Chem. Chem. Phys. 2018, 20, 15149.
| Crossref | GoogleScholarGoogle Scholar | 29789850PubMed |
[53] H. Fang, C. X. Zhang, L. Liu, Y. M. Zhao, H. J. Xu, Biosens. Bioelectron. 2015, 64, 434.
| Crossref | GoogleScholarGoogle Scholar | 25282397PubMed |
[54] Y. Wang, S. Ma, H. Yu, Y. Liu, J. Gao, L. Yang, M. Zhang, S. Zhaoqi, G. He, Nanotechnology 2021, 32, 075708.
| Crossref | GoogleScholarGoogle Scholar | 33120370PubMed |
[55] Y. Shan, Y. Yang, Y. Cao, H. Yin, N. V. Long, Z. Huang, RSC Adv. 2015, 5, 34737.
| Crossref | GoogleScholarGoogle Scholar |
[56] J. Liu, Q. Liang, R. Zhao, S. Lei, W. Hu, Mater. Chem. Front. 2020, 4, 354.
| Crossref | GoogleScholarGoogle Scholar |