Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

How water level management affects cladoceran assemblages in lakes lateral to a reservoir

José Roberto Debastiani-Júnior A B and Marcos Gomes Nogueira A
+ Author Affiliations
- Author Affiliations

A Departamento de Zoologia, Instituto de Biociências de Botucatu – UNESP, Distrito de Rubião Jr, s/n, CEP 18618-970, Botucatu, SP, Brazil.

B Corresponding author. Email: debastianijunior@gmail.com

Marine and Freshwater Research 67(12) 1853-1861 https://doi.org/10.1071/MF14281
Submitted: 29 July 2014  Accepted: 18 August 2015   Published: 10 December 2015

Abstract

This study analysed the effects of induced water level depletion for macrophyte control in a tropical reservoir on the cladoceran fauna of two differentially connected lateral lakes. One lake, Pedra Branca, is located in the right margin and has a narrow connection to the main river–reservoir channel as well as a higher proportion of submerged macrophytes. On the opposite margin is Lake Guaritá, which is shallower and has a wider connection. Samples were collected over 16 consecutive months, including periods before, during and after depletion. Both lakes showed closely related trends in depth, pH, DO, conductivity, chlorophyll, temperature, suspended matter, phosphorus, nitrogen, silicate and ammonium variation, although a wider amplitude in variation was observed in Pedra Branca. This lake also had higher cladoceran diversity and a predominance of Chydoridae, whereas Bosminidae prevailed in Guaritá. Depletion caused a reduction in richness and an increase of Bosminidae in both lakes, although this was more pronounced in Pedra Branca. The management moderately affected both lakes but continuous application of this procedure may lead to a shift in the system steady-state and a loss of diversity that could be difficult to reverse.

Additional keywords: Bosminidae, Chydoridae, connectivity, macrophyte control, reservoir management.


References

Acharya, K., Jack, J. D., and Bukaveckas, P. A. (2005). Dietary effects on life history traits of riverine Bosmina. Freshwater Biology 50, 965–975.
Dietary effects on life history traits of riverine Bosmina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslWntbk%3D&md5=c0ce858efaca059557cf73a71b08f43eCAS |

Allen, M. R. (2007). Measuring and modeling dispersal of adult zooplakton. Oecologia 153, 135–143.
Measuring and modeling dispersal of adult zooplakton.Crossref | GoogleScholarGoogle Scholar | 17375330PubMed |

Carpenter, S. R., and Lodge, D. M. (1986). Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26, 341–370.
Effects of submersed macrophytes on ecosystem processes.Crossref | GoogleScholarGoogle Scholar |

Carvalho, P., Thomaz, S. M., and Bini, L. M. (2005). Effects of temperature on decomposition of potential nuisance species: the submerged aquatic macrophyte Egeria najas Planchon (Hydrocharitaceae). Brazilian Journal of Biology 65, 51–60.
Effects of temperature on decomposition of potential nuisance species: the submerged aquatic macrophyte Egeria najas Planchon (Hydrocharitaceae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MzmvVeksQ%3D%3D&md5=878b851260eac2ae8444eb34a01d7937CAS |

Daldorph, P. W. G. (1999). A reservoir in management-induced transition between ecological states. Hydrobiologia 395/396, 325–333.
A reservoir in management-induced transition between ecological states.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFGhurw%3D&md5=123adc47bf606db467e29474af0b293dCAS |

Debastiani-Júnior, J. R., Elmoor-Loureiro, L. M. A., and Nogueira, M. G (in press). Influence of habitat structure on Cladocera (Crustacea Branchiopoda) species composition. Brazilian Journal of Biology , .

Eitam, A., Blaunstein, L., Van Damme, K., Dumont, H. J., and Martens, K. (2004). Crustacean species richness in temporary pools: relationships with habitat traits. Hydrobiologia 525, 125–130.
Crustacean species richness in temporary pools: relationships with habitat traits.Crossref | GoogleScholarGoogle Scholar |

Elmoor-Loureiro, L. M. A. (1997). ‘Manual de Identificação de Cladóceros Límnicos do Brasil’, 1st edn. (Universia: Brasília.)

Fantin-Cruz, I., Loverde-Oliveira, S. M., Bonecker, C. C., Girad, P., and Motta-Marque, D. (2011). Relationship between the structure of zooplankton community and the water level in a floodplain lake from the Pantanal, Mato Grosso State, Brazil. Acta Scientiarum Biological Sciences 33, 271–279.
Relationship between the structure of zooplankton community and the water level in a floodplain lake from the Pantanal, Mato Grosso State, Brazil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlGrt7fI&md5=77b7d2788b468ab817838155ada69960CAS |

Ferrareze, M., and Nogueira, M. G. (2011). Importance of lateral lagoons for the ichthyofauna in a large tropical reservoir. Brazilian Journal of Biology 71, 807–820.
Importance of lateral lagoons for the ichthyofauna in a large tropical reservoir.Crossref | GoogleScholarGoogle Scholar |

Ferrareze, M., Nogueira, M. G., and Sartori, L. (2014). Limnology of a lateral lagoon system connected to a Neotropical reservoir (Rosana Reservoir, São Paulo/Patraná, Brazil). Acta Scientiarum Biological Sciences 36, 197–207.
Limnology of a lateral lagoon system connected to a Neotropical reservoir (Rosana Reservoir, São Paulo/Patraná, Brazil).Crossref | GoogleScholarGoogle Scholar |

Ferreiro, N., Feijoó, C., Giorgi, A., and Leggieri, L. (2011). Effects of macrophyte heterogeneity and food availability on structural parameters of the macroinvertebrate community in a Pampean stream. Hydrobiologia 664, 199–211.
Effects of macrophyte heterogeneity and food availability on structural parameters of the macroinvertebrate community in a Pampean stream.Crossref | GoogleScholarGoogle Scholar |

Forró, A., Korovchinsky, N. M., Kotov, A. A., and Petrusek, A. (2008). Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. Hydrobiologia 595, 177–184.
Global diversity of cladocerans (Cladocera; Crustacea) in freshwater.Crossref | GoogleScholarGoogle Scholar |

Frutos, S. M., and Carnevali, R. (2008). Zoo-heleoplankton structure in three artificial ponds of north-eastern Argentina. Revista de Biologia Tropical 56, 1135–1147.
| 1:STN:280:DC%2BD1MzisFyrtA%3D%3D&md5=d632935bc0eb3641f296e98e42700e41CAS | 19419034PubMed |

Frutos, S. M., Poi de Neiff, A. S. G., and Neiff, J. J. (2009). Zooplankton abundance and species diversity in two lakes with different trophic states (Corrientes, Argentina). Acta Limnologica Brasiliensia 21, 367–375.

Golterman, K. L., Clymo, R. S., and Ohmstad, M. A. M. (1978). ‘Methods for Physical and Chemical Analysis of Freshwaters’, 2nd edn. (Scientific Publications: Oxford, UK.)

Granado, D. C., and Henry, R. (2012). The influence of the hydrologic pulse on the water physical and chemical variables of lateral lakes with different connection levels to Paranapanema River in the mouth zone at Jurumirim Reservoir (São Paulo, Brazil). Acta Limnologica Brasiliensia 20, 265–275.

Hobæk, A., Manca, M., and Andersen, T. (2002). Factors influencing species richness in lacustrine zooplankton. Acta Oecologica 23, 155–163.
Factors influencing species richness in lacustrine zooplankton.Crossref | GoogleScholarGoogle Scholar |

Jeppesen, E., Jensen, J. P., Søndergaard, M., Lauridsen, T., Pedersen, L. J., and Jensen, L. (1997). Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342/343, 151–164.
Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth.Crossref | GoogleScholarGoogle Scholar |

José de Paggi, S. B., and Paggi, J. C. (2008). Hydrological connectivity as a shaping force in the zooplankton community of two lakes in the Paraná River floodplain. International Review of Hydrobiology 93, 659–678.
Hydrological connectivity as a shaping force in the zooplankton community of two lakes in the Paraná River floodplain.Crossref | GoogleScholarGoogle Scholar |

Junk, W. J., Bayley, P. B., and Sparks, R. E. (1989). The flood pulse concept in river–floodplain systems. In ‘Proceedings of the International Large River Symposium (LARS)’, 14–21 September 1986, Honey Harbour, ON, Canada. pp. 110–127. (Canadian Special Publication of Fisheries and Aquatic Sciences:, Ottawa, ON, Canada.)

Korovchinsky, N. M. (1992). ‘Sididae & Holopedidae. Guides to the Identification of Microinvertebrates of the Continental Waters of the World’, vol. 3. (Ed. H. J. Dumont.) (SPB Academic Publishing: Hague, Netherlands.)

Leira, M., and Cantonati, M. (2008). Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia 613, 171–184.
Effects of water-level fluctuations on lakes: an annotated bibliography.Crossref | GoogleScholarGoogle Scholar |

Mackereth, F. I. H., Heron, J., and Talling, J. F. (1978). ‘Water Analysis: Some Revised Methods for Limnologists.’ (Freshwater Biological Association: London.)

McAbendroth, L., Ramsay, P. M., Foggo, A., Rundle, S. D., and Bilton, D. T. (2005). Does macrophyte fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos 111, 279–290.
Does macrophyte fractal complexity drive invertebrate diversity, biomass and body size distributions?Crossref | GoogleScholarGoogle Scholar |

McCune, B., and Mefford, M. J. (2006). PC-ORD. Multivariate Analysis of Ecological Data. Version 5.31 MjM Software. (Gleneden Beach, Lincoln County, OR, USA.)

Meerhoff, M., Fosalba, C., Bruzzone, C., Mazzeo, N., Noordoven, W., and Jeppesen, E. (2006). An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes. Freshwater Biology 51, 1320–1330.
An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes.Crossref | GoogleScholarGoogle Scholar |

Nogueira, M. G., Perbiche-Neves, G., and Naliato, D. A. O. (2012). Limnology of two contrasting hydroelectric reservoirs (storage and run-of-river) in southeast Brazil. In ‘Hydropower – Practice and Application’. (Ed. H. S. Borougeni.) pp. 167–184. (INTECH: Rijeka, Croatia.)

Orlova-Bienkowskaja, M. J. (1998). A revision of the cladoceran genus Simocephalus (Crustacea, Daphniidae). Bulletin of the Natural History Museum, London 64, 1–62.

Panarelli, E. A., Casanova, S. M. C., and Henry, R. (2008). The role of resting eggs in the recovery of zooplankton community in a marginal lake of the Paranapanema River (São Paulo, Brazil), after a long drought period. Acta Limnologica Brasiliensia 20, 73–88.

Pelicice, F. M., Agostinho, A. A., and Thomaz, S. M. (2005). Fish assemblages associated with Egeria in a tropical reservoir: investigating the effects of plant biomass and diel period. Acta Oecologica 27, 9–16.
Fish assemblages associated with Egeria in a tropical reservoir: investigating the effects of plant biomass and diel period.Crossref | GoogleScholarGoogle Scholar |

Perbiche-Neves, G., and Nogueira, M. G. (2010). Multi-dimensional effects on Cladoceran (Crustacea, Anomopoda) assemblages in two cascade reservoirs in southeast Brazil. Lakes and Reservoirs: Research and Management 15, 139–152.
Multi-dimensional effects on Cladoceran (Crustacea, Anomopoda) assemblages in two cascade reservoirs in southeast Brazil.Crossref | GoogleScholarGoogle Scholar |

Poi de Neiff, A. (2003). Macroinvertebrates living on Eichornia azurea Kunth in the Paraguay River. Acta Limnologica Brasiliensia 15, 55–63.

Roche, K. F., and Rocha, O. (2005). ‘Ecologia Trófica de Peixes com Ênfase na Planctivoria em Ambientes Lênticos de Água Doce no Brasil.’ (Rima: São Carlos.)

Sarma, S. S. S., Nandini, S., and Gulati, R. D. (2005). Life history strategies of cladocerans: comparisons of tropical and temperate taxa. Hydrobiologia 542, 315–333.
Life history strategies of cladocerans: comparisons of tropical and temperate taxa.Crossref | GoogleScholarGoogle Scholar |

Scheffer, M., and Carpenter, S. R. (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology & Evolution 18, 648–656.
Catastrophic regime shifts in ecosystems: linking theory to observation.Crossref | GoogleScholarGoogle Scholar |

Scheffer, M., and van Geest, G. J. (2006). Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 112, 227–231.
Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds.Crossref | GoogleScholarGoogle Scholar |

Shimabukuro, E. M., and Henry, R. (2011). Controlling factors of benthic macroinvertebrates distribution in a small tropical pond, lateral to the Paranapanema River (São Paulo, Brazil). Acta Limnologica Brasiliensia 23, 154–163.
Controlling factors of benthic macroinvertebrates distribution in a small tropical pond, lateral to the Paranapanema River (São Paulo, Brazil).Crossref | GoogleScholarGoogle Scholar |

Smirnov, N. N. (1996). Cladocera: the Chydorinae and Sayciinae (Chydoridae) of the World. In ‘Guides to the Identification of the Microinvertebrates of the Continental Waters of the World’. (Ed. H. J. Dumont.) (SPB Academic Publishing: Amsterdam.)

Strickland, J. D., and Parsons, T. R. (1960). A manual of sea water analysis. Bulletin – Fisheries Research Board of Canada 125, 1–185.

Thomaz, S. M., and Cunha, E. R. (2010). The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnologica Brasiliensia 22, 218–236.
The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity.Crossref | GoogleScholarGoogle Scholar |

Thomaz, S. M., Pagioro, T. A., Bini, L. M., and Murphy, K. J. (2006). Effect of reservoir drawdown on biomass of three species of aquatic macrophytes in a large sub-tropical reservoir (Itaipu, Brazil). Hydrobiologia 570, 53–59.
Effect of reservoir drawdown on biomass of three species of aquatic macrophytes in a large sub-tropical reservoir (Itaipu, Brazil).Crossref | GoogleScholarGoogle Scholar |

Thomaz, S. M., Dibble, E. D., Evangelista, L. R., Higuti, J., and Bini, L. M. (2008). Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology 53, 358–367.

Valderrama, J. G. (1981). The simultaneous analysis of total nitrogen and phosphorus in natural waters. Marine Chemistry 10, 109–122.
The simultaneous analysis of total nitrogen and phosphorus in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktlSjtbY%3D&md5=6964631ce065d3fece04a988fae73508CAS |

Ward, J. V. (1989). The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society 8, 2–8.
The four-dimensional nature of lotic ecosystems.Crossref | GoogleScholarGoogle Scholar |

Ward, J. V., Tockner, K., and Schiemer, F. (1999). Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regulated Rivers: Research and Management 15, 125–139.
Biodiversity of floodplain river ecosystems: ecotones and connectivity.Crossref | GoogleScholarGoogle Scholar |

Zalocar de Domitrovic, Y. Z. (2002). Structure and variation of the Paraguay River phytoplankton in two periods of its hydrological cycle. Hydrobiologia 472, 177–196.
Structure and variation of the Paraguay River phytoplankton in two periods of its hydrological cycle.Crossref | GoogleScholarGoogle Scholar |