Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Systematic revision of Brachypelma red-kneed tarantulas (Araneae : Theraphosidae), and the use of DNA barcodes to assist in the identification and conservation of CITES-listed species

Jorge Mendoza A B C and Oscar Francke B
+ Author Affiliations
- Author Affiliations

A Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.P. 04510, Coyoacán, Distrito Federal, Mexico.

B Colección Nacional de Arácnidos, Módulo D planta baja, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, 3er circuito exterior, Apto. Postal 70-153, CP 04510, Ciudad Universitaria, Coyoacán, Distrito Federal, Mexico.

C Corresponding author. Email: nomeireth@hotmail.com

Invertebrate Systematics 31(2) 157-179 https://doi.org/10.1071/IS16023
Submitted: 15 March 2016  Accepted: 16 September 2016   Published: 26 April 2017

Abstract

Mexican red-kneed tarantulas of the genus Brachypelma are regarded as some of the most desirable invertebrate pets, and although bred in captivity, they continue to be smuggled out of the wild in large numbers. Species are often difficult to identify based solely on morphology, therefore prompt and accurate identification is required for adequate protection. Thus, we explored the applicability of using COI-based DNA barcoding as a complementary identification tool. Brachypelma smithi (F. O. Pickard-Cambridge, 1897) and Brachypelma hamorii Tesmongt, Cleton & Verdez, 1997 are redescribed, and their morphological differences defined. Brachypelma annitha is proposed as a new synonym of B. smithi. The current distribution of red-kneed tarantulas shows that the Balsas River basin may act as a geographical barrier. Morphological and molecular evidence are concordant and together provide robust hypotheses for delimiting Mexican red-kneed tarantula species. DNA barcoding of these tarantulas is further shown to be useful for species-level identification and for potentially preventing black market trade in these spiders. As a Convention on International Trade in Endangered Species (CITES) listing does not protect habitat, or control wildlife management or human interactions with organisms, it is important to support environmental conservation activities to provide an alternative income for local communities and to avoid damage to wildlife populations.

Additional keywords: DNA bar-coding, taxonomy, molecular phylogenetics.


References

Arnedo, M., and Fernández, M. (2007). Mitochondrial markers reveal deep population subdivision in the European protected spider Macrothele calpeiana (Walckenaer, 1805) (Araneae, Hexathelidae). Conservation Genetics 8, 1147–1162.
Mitochondrial markers reveal deep population subdivision in the European protected spider Macrothele calpeiana (Walckenaer, 1805) (Araneae, Hexathelidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlSgsrY%3D&md5=dfa2065f6e2db499cfa3429e8bc91039CAS |

Barrett, R., and Hebert, P. (2005). Identifying spiders through DNA barcodes. Canadian Journal of Zoology 83, 481–491.
Identifying spiders through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFylsrk%3D&md5=b10125dda9e2a5563335cb994154d446CAS |

Baxter, R. N. (1993). ‘Keeping and Breeding Tarantulas.’ (Chudleigh Publishing: Ilford, UK.)

Bertani, R. (2000). Male palpal bulbs and homologous features in Theraphosinae (Araneae, Theraphosidae). The Journal of Arachnology 28, 29–42.
Male palpal bulbs and homologous features in Theraphosinae (Araneae, Theraphosidae).Crossref | GoogleScholarGoogle Scholar |

Bertani, R. (2001). Revision, cladistic analysis and zoogeography of Vitalius, Nhandu and Proshapalopus, with notes on other theraphosine genera (Araneae, Theraphosidae). Arquivos de Zoologia 36, 265–356.

Blagoev, G., Hebert, P., Adamowicz, S., and Robinson, E. (2009). Prospects for using DNA barcoding to identify spiders in species-rich genera. ZooKeys 16, 27–46.
Prospects for using DNA barcoding to identify spiders in species-rich genera.Crossref | GoogleScholarGoogle Scholar |

Blagoev, G. A., deWaard, J. R., Ratnasingham, S., deWaard, S. L., Lu, L., Robertson, J., Telfer, A. C., and Hebert, P. D. N. (2016). Untangling taxonomy: a DNA barcode reference library for Canadian spiders. Molecular Ecology Resources 16, 325–341.
Untangling taxonomy: a DNA barcode reference library for Canadian spiders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitV2jtr7O&md5=cf001801a1111da37dd17940466901b4CAS |

Bond, J. E., and Stockman, A. K. (2008). An integrative method for delimiting cohesion species: finding the population-species interface in a group of Californian trapdoor spiders with extreme genetic divergence and geographic structuring. Systematic Biology 57, 628–646.
An integrative method for delimiting cohesion species: finding the population-species interface in a group of Californian trapdoor spiders with extreme genetic divergence and geographic structuring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVymsr%2FN&md5=4abf1c7471e7b912dae3449e2c369120CAS |

Briscoe, A. G., Goodacre, S., Masta, S. E., Taylor, M. I., Arnedo, M. A., Penney, D., Kenny, J., and Creer, S. (2013). Can long-range PCR be used to amplify genetically divergent mitochondrial genomes for comparative phylogenetics? A case study within spiders (Arthropoda : Araneae). PLoS One 8, e62404.
Can long-range PCR be used to amplify genetically divergent mitochondrial genomes for comparative phylogenetics? A case study within spiders (Arthropoda : Araneae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvVyisLw%3D&md5=bfccb2e43151995b4e38a6856695c523CAS |

Brown, S. D. J., Collins, R. A., Boyer, S., Lefort, M. C., Malumbres-Olarte, J., Vink, C. J., and Cruickshank, R. H. (2012). SPIDER: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Molecular Ecology Resources 12, 562–565.
SPIDER: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding.Crossref | GoogleScholarGoogle Scholar |

BWPM (2014). Códigos de Barras de la Vida Silvestre México. Available at http://bwp-mex.blogspot.mx/ [Accessed 12 December 2015].

Carey, J. E. (1999). Improving the efficacy of CITES by providing the proper incentives to protect endangered species. Washington University Law Review 77, 1291–1322.

Chan, A., Chiang, L., Hapuarachchi, H., Tan, C., Pang, S., Lee, R., Lee, K., Ng, L., and Lam-Phua, S. (2014). DNA barcoding: complementing morphological identification of mosquito species in Singapore. Parasites & Vectors 7, 569.
DNA barcoding: complementing morphological identification of mosquito species in Singapore.Crossref | GoogleScholarGoogle Scholar |

Chen, J., Li, Q., Kong, L., and Yu, H. (2011). How DNA barcodes complement taxonomy and explore species diversity: the case study of a poorly understood marine fauna. PLoS One 6, e21326.
How DNA barcodes complement taxonomy and explore species diversity: the case study of a poorly understood marine fauna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVWitrg%3D&md5=9ccc779afd30947c87f812156bb4ac66CAS |

Dickinson, B. (2002). International conservation treaties, poverty and development: the case of CITES. Natural Resource Perspectives 74, 1–4.

Folmer, O., Black, M., Hoech, W., Lutz, R., and Vrijenhoeck, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=301bf4945988b7429a8e829133746d39CAS |

Goloboff, P. A., Farris, J. S., and Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786.
TNT, a free program for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Graham, M. R., Hendrixson, B. E., Hamilton, C. A., and Bond, J. E. (2015). Miocene extensional tectonics ex­plain ancient patterns of diversification among turret-building tarantulas (Aphonopelma mo­jave group) in the Mojave and Sonoran deserts. Journal of Biogeography 42, 1052–1065.

Greenstone, M., Rowley, D., Heimbach, U., Lundgren, J., Pfannenstiel, R., and Rehner, S. (2005). Barcoding generalist predators by polymerase chain reaction: carabids and spiders. Molecular Ecology 14, 3247–3266.
Barcoding generalist predators by polymerase chain reaction: carabids and spiders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGltb7M&md5=a15f1e2c78d9983fd323738181d935a3CAS |

Hamilton, C. A., Formanowicz, D. R., and Bond, J. E. (2011). Species delimitation and phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): cryptic diversity in North American tarantulas. PLoS One 6, e26207.
Species delimitation and phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): cryptic diversity in North American tarantulas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSgsbjI&md5=b41afbd196876163467847c3ac4bc93cCAS |

Hamilton, C. A., Hendrixson, B. E., Brewer, M. S., and Bond, J. (2014). An evaluation of sampling effects on multiple DNA barcoding methods leads to an integrative approach for delimiting species: a case study of the North American tarantula genus Aphonopelma (Araneae, Mygalomorphae, Theraphosidae). Molecular Phylogenetics and Evolution 71, 79–93.
An evaluation of sampling effects on multiple DNA barcoding methods leads to an integrative approach for delimiting species: a case study of the North American tarantula genus Aphonopelma (Araneae, Mygalomorphae, Theraphosidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlGktrY%3D&md5=013b9dcf936eadbb85109f461cf20322CAS |

Hamilton, C. A., Hendrixson, B. E., and Bond, J. E. (2016). Taxonomic revision of the tarantula genus Aphonopelma Pocock 1901 (Araneae, Mygalomorphae, Theraphosidae) within the United States. ZooKeys 560, 1–340.
Taxonomic revision of the tarantula genus Aphonopelma Pocock 1901 (Araneae, Mygalomorphae, Theraphosidae) within the United States.Crossref | GoogleScholarGoogle Scholar |

Hancock, K. and Hancock, J. (1989). Sex Determination of Immature Theraphosid Spiders from Their Cast Skins.’ (Published by the authors: Southminster, England.)

Hebert, P. D., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B, Biological Sciences 270, 313–321.
Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVWiu7g%3D&md5=74c96653f346aee0276a4b4877be73e8CAS |

Hendrixson, B. E., DeRussy, B. M., Hamilton, C. A., and Bond, J. E. (2013). An exploration of species boundaries in turret-building tarantulas of the Mojave Desert (Araneae, Mygalomorphae, Theraphosidae, Aphonopelma). Molecular Phylogenetics and Evolution 66, 327–340.
An exploration of species boundaries in turret-building tarantulas of the Mojave Desert (Araneae, Mygalomorphae, Theraphosidae, Aphonopelma).Crossref | GoogleScholarGoogle Scholar |

Hendrixson, B. E., Guice, A. V., and Bond, J. E. (2015). Integrative species delimitation and conservation of tarantulas (Araneae, Mygalomorphae, Theraphosidae) from a North American biodiversity hotspot. Insect Conservation and Diversity 8, 120–131.
Integrative species delimitation and conservation of tarantulas (Araneae, Mygalomorphae, Theraphosidae) from a North American biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |

Huelsenbeck, J. P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
MRBAYES: Bayesian inference of phylogenetic trees.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=82e415832d42a58a58bf16a79056e67dCAS |

Hutton, J., and Dickson, B. (2000). ‘Endangered Species, Threatened Convention: the Past, Present and Future of CITES.’ (Earthscan: London.)

Inecc (2012). Tráfico ilegal de especies silvestres y sus impactos. Available at http://www.inecc.gob.mx/descargas/dgioece/2012_sem_trafico_pon01_alow.pdf [Accessed 9 January 2016].

Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059–3066.
MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslOqu7s%3D&md5=2ee4171d6c43a0e5917f791d8ad2aa3fCAS |

Katoh, K., Kuma, K., Toh, H., and Miyata, T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33, 511–518.
MAFFT version 5: improvement in accuracy of multiple sequence alignment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2qsbc%3D&md5=b094173d597c027ec1356c22e6d99299CAS |

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar |

Kuntner, M., and Agnarsson, I. (2011). Biogeography and diversification of hermit spiders on Indian Ocean islands (Nephilidae : Nephilengys). Molecular Phylogenetics and Evolution 59, 477–488.
Biogeography and diversification of hermit spiders on Indian Ocean islands (Nephilidae : Nephilengys).Crossref | GoogleScholarGoogle Scholar |

Locht, A., Yáñez, M., and Vázquez, I. (1999). Distribution and natural history of Mexican species of Brachypelma and Brachypelmides (Theraphosidae, Theraphosinae) with morphological evidence for their synonymy. The Journal of Arachnology 27, 196–200.

Longhorn, S., Nicholas, M., Chuter, J., and Vogler, A. (2007). The utility of molecular markers from non-lethal DNA samples of the CITES II protected ‘tarantula’ Brachypelma vagans (Araneae, Theraphosidae). The Journal of Arachnology 35, 278–292.
The utility of molecular markers from non-lethal DNA samples of the CITES II protected ‘tarantula’ Brachypelma vagans (Araneae, Theraphosidae).Crossref | GoogleScholarGoogle Scholar |

López, X., and Íñigo, E. (2009). La captura de aves silvestres en México: una tradición milenaria y las estrategias para regularla. Biodiversitas 83, 11–15.

Mendoza, J. I. M. (2014). Taxonomic revision of Hemirrhagus Simon, 1903 (Araneae: Theraphosidae, Theraphosinae), with description of five new species from Mexico. Zoological Journal of the Linnean Society 170, 634–689.
Taxonomic revision of Hemirrhagus Simon, 1903 (Araneae: Theraphosidae, Theraphosinae), with description of five new species from Mexico.Crossref | GoogleScholarGoogle Scholar |

Montes de Oca, L., D’Elía, G., and Pérez-Miles, F. (2016). An integrative approach for species delimitation in the spider genus Grammostola (Theraphosidae, Mygalomorphae). Zoologica Scripta 45, 322–333.
An integrative approach for species delimitation in the spider genus Grammostola (Theraphosidae, Mygalomorphae).Crossref | GoogleScholarGoogle Scholar |

Mundie, D. A. (1995). The NBS/ISCC Color System / David A. Mundie Pittsburgh, PA: Polymath Systems 535.6 dc-20. Available at http://www.anthus.com/Colors/NBS.html [Accessed 12 March 2015].

Ortíz, D., and Francke, F. (2016). Two DNA barcodes and morphology for multi-method species delimitation in Bonnetina tarantulas (Araneae : Theraphosidae). Molecular Phylogenetics and Evolution 101, 176–193.
Two DNA barcodes and morphology for multi-method species delimitation in Bonnetina tarantulas (Araneae : Theraphosidae).Crossref | GoogleScholarGoogle Scholar |

Pante, E., Schoelinck, C., and Puillandre, N. (2015). From integrative taxonomy to species description: one step beyond. Systematic Biology 64, 152–160.
From integrative taxonomy to species description: one step beyond.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2M3ksleitw%3D%3D&md5=300e2853ffce5b20ae3aa64acbd0558bCAS |

Pérez-Miles, F. (1989). Variaci6n relativa de caracteres somaticos y genitales en Grammostola mollicoma(Araneae, Theraphosidae). Journal of Arachnology 17, 263–274.

Pérez-Miles, F. (1994). Tarsal scopula division in Theraphosinae (Araneae, Theraphosidae): its systematic significance. The Journal of Arachnology 22, 46–53.

Peters, H. J. (2000). Tarantulas of the world. Kleiner Atlas der Vogelspinnen 1, 148.

Peters, H. J. (2003). ‘Tarantulas of the World: Amerika’s Vogelspinnen.’ (Published by the author: Wegberg, Germany.)

Petersen, F. T., Damgaard, J., and Meier, R. (2007). DNA taxonomy: how many DNA sequences are needed for solving a taxonomic problem? The case of two parapatric species of louse flies (Diptera : Hippoboscidae : Ornithomya Latreille, 1802). Arthropod Systematics & Phylogeny 65, 119–125.

Pickard-Cambridge, F. O. (1897). Arachnida – Araneida and Opiliones. Biologia Centrali-Americana Zoology (Jena, Germany) 2, 1–40.

Pocock, R. I. (1903). On some genera and species of South-American Aviculariidae. Annals & Magazine of Natural History 11, 81–115.
On some genera and species of South-American Aviculariidae.Crossref | GoogleScholarGoogle Scholar |

Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.
jModelTest: phylogenetic model averaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=869b4e34c8c120fdc84b0dfe320c7928CAS |

Prendini, L. (2005). Comment on “identifying species through DNA barcodes”. Canadian Journal of Zoology 83, 498–504.
Comment on “identifying species through DNA barcodes”.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFylsrY%3D&md5=30eb363a9c2e74b4b13b79e68f2a5f99CAS |

PROFEPA (2009). ‘La Vida Silvestre y su Protección Legal.’ (Secretaria del Medio Ambiente y Recursos Naturales: Mexico.)

Reichling, S. B. (2003). ‘Tarantulas of Belize.’ (Krieger Publishing Company: Malabar, FL.)

Rojo, R. (2004). Las Tarántulas de México: pequeños gigantes incomprendidos. Biodiversitas 56, 7–11.

Ronquist, F., and Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MRBAYES 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=551961d8686b21e6a8f449a4435c2cfdCAS |

Schmidt, G. (1992a). Brachypelma Simon 1890 oder Euathlus Ausserer 1875? (Araneida: Theraphosidae: Theraphosinae). Arachnologischer Anzeiger 3, 9–11.

Schmidt, G. (1992b). Brachypelma auratum sp. n., die sogenannte Hochlandform von Brachypelma smithi (Araneida: Theraphosidae: Theraphosinae). Arachnologischer Anzeiger 3, 9–14.

Schmidt, G. (1993). ‘Vogelspinnen: Vorkommen, Lebensweise, Haltung und Zucht, mit Bestimmungsschlüsseln für Alle Gattungen, Vierte Auflage.’ (Landbuch Verlag: Hannover, Germany.)

Schmidt, G. (1997). Bestimmungsschlüssel für die gattungen der unterfamilie Theraphosinae (Araneae : Theraphosidae). Arachnologisches Magazin 3, 1–27.

Schmidt, G. (2003). Die Vogelspinnen: eine weltweite Übersicht. (Neue Brehm-Bücherei: Hohenwarsleben, Germany.)

Schultz, S. A., and Schultz, M. J. (2009). ‘The Tarantula Keepers Guide.’ (Barron’s Educational Series: New York, NY.)

Scotland, R. W., Hughes, C., Bailey, D., and Wortley, A. (2003). The Big Machine and the much-maligned taxonomist. Systematics and Biodiversity 1, 139–143.
The Big Machine and the much-maligned taxonomist.Crossref | GoogleScholarGoogle Scholar |

Simon, E. (1891). Liste des Aviculariides qui habitant le Mexique et l’Amérique centrale. Actes de la Société Linnéenne de Bordeaux 44, 327–339.

Slowik, J., and Blagoev, G. A. (2012). A survey of spiders (Arachnida: Araneae) of Prince Wales Island, Alaska; combining morphological and DNA barcode identification techniques. Insecta Mundi 251, 1–12.

Smith, A. M. (1994). ‘Tarantula Spiders Tarantulas of the USA and Mexico.’ (Fitzgerald: London.)

Sun, Y., Li, Q., Kong, L., and Zheng, X. (2012). DNA barcoding of Caenogastropoda along coast of China based on the COI gene. Molecular Ecology Resources 12, 209–218.
DNA barcoding of Caenogastropoda along coast of China based on the COI gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVCmtrc%3D&md5=ff6dee6cadfcdde4f4b5802c86860ed1CAS |

Tesmoingt, M., Cleton, F., and Verdez, J. M. (1997a). Description de Brachypelma annitha n. sp. et de Brachypelma hamorii n. sp. mâles et femelles, nouvelles espèces proches de Brachypelma smithi (Cambridge, 1897) du Mexique. Arachnides 32, 8–20.

Tesmoingt, M., Cleton, F., and Verdez, J. M. (1997b). Description de Brachypelma annitha n. sp. et de Brachypelma hamorii n. sp. mâles et femelles, nouvelles espèces proches de Brachypelma smithi (Cambridge, 1897) du Mexique. 2ème partie. Arachnides 33, 2–10.

Teyssié, F. (2015). ‘Tarantulas of the World.’ (NAP Editions: France.)

West, R. C. (2005). The Brachypelma of Mexico. Journal of the British Tarantula Society 20, 108–119.

Will, K., and Rubinoff, D. (2004). Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20, 47–55.
Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification.Crossref | GoogleScholarGoogle Scholar |

Wilson, J. S., Gunnell, C. F., Wahl, D. B., and Pitts, J. P. (2013). Testing the species limits of the tarantulas (Araneae: Theraphosidae) endemic to California’s Southern Coast Ranges, USA. Insect Conservation and Diversity 6, 365–371.

World Spider Catalog (2016). Version 17. Natural History Museum Bern. Available at http://wsc.nmbe.ch [Accessed 25 January 2016].