Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
REVIEW

A review of the status of Coptotermes (Isoptera : Rhinotermitidae) species in Australia with the description of two new small termite species from northern and eastern Australia

Timothy R. C. Lee A B G , Theodore A. Evans C , Stephen L. Cameron D , Simon Y. W. Ho A , Anna A. Namyatova E F and Nathan Lo A
+ Author Affiliations
- Author Affiliations

A University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia.

B Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW 2010, Australia.

C School of Animal Biology, University of Western Australia, Perth, WA 6009, Australia.

D Department of Entomology, Purdue University, West Lafayette, IN 47907, USA.

E University of New South Wales, Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, Sydney, NSW 2052, Australia.

F St Petersburg State University, Department of Entomology, Faculty of Biology, St Petersburg 199734, Russian Federation.

G Corresponding author. Email: Timothy.Lee@austmus.gov.au

Invertebrate Systematics 31(2) 180-190 https://doi.org/10.1071/IS16031
Submitted: 21 May 2015  Accepted: 21 September 2016   Published: 26 April 2017

Abstract

Integrative taxonomy, including molecular, morphological, distributional and biological data, is applied in a review of the taxonomy of the Australian species of the pest termite genus Coptotermes. The validity of the previously described species is discussed, and two new species, Coptotermes nanus, sp. nov. and Coptotermes cooloola, sp. nov., are described from the Kimberley region of Western Australia and south-east Queensland respectively. Their delimitation is based on morphological and distributional data, and the results of generalised mixed Yule-coalescent analysis of mitochondrial DNA sequence data. Images of the external view of the two new species are provided, as well as a key, based on soldier characters, for all Australian species of Coptotermes.

Additional keywords: Bayesian phylogenetics, integrative taxonomy, mitochondrial DNA, new species, species delimitation.


References

Bourguignon, T., and Roisin, Y. (2011). Revision of the termite family Rhinotermitidae (Isoptera) in New Guinea. ZooKeys 148, 55–103.
Revision of the termite family Rhinotermitidae (Isoptera) in New Guinea.Crossref | GoogleScholarGoogle Scholar |

Bourguignon, T., Lo, N., Cameron, S. L., Sobotnik, J., Hayashi, Y., Shigenobu, S., Watanabe, D., Roisin, Y., Miura, T., and Evans, T. A. (2015). The evolutionary history of termites as inferred from 66 mitochondrial genomes. Molecular Biology and Evolution 32, 406–421.
The evolutionary history of termites as inferred from 66 mitochondrial genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlGru77P&md5=087d27f862429aba4fad67802a5ba617CAS |

Brown, W. V., Watson, J. A. L., Carter, F. L., Lacey, M. J., Barrett, R. A., and McDaniel, C. A. (1990). Preliminary examination of cuticular hydrocarbons of worker termites as chemotaxonomic characters for some Australian species of Coptotermes (Isoptera, Rhinotermitidae). Sociobiology 16, 305–328.

Brown, W. V., Lacey, M. J., and Lenz, M. (2004). Further examination of cuticular hydrocarbons of worker termites of Australian Coptotermes (Isoptera : Rhinotermitidae) reveals greater taxonomic complexity within species. Sociobiology 44, 623–658.

Calaby, J. H., and Gay, F. J. (1956). The distribution and biology of the genus Coptotermes (Isoptera) in Western Australia. Australian Journal of Zoology 4, 19–39.
The distribution and biology of the genus Coptotermes (Isoptera) in Western Australia.Crossref | GoogleScholarGoogle Scholar |

Cameron, S. L., Lo, N., Bourguignon, T., Svenson, G. J., and Evans, T. A. (2012). A mitochondrial genome phylogeny of termites (Blattodea : Termitoidae): robust support for interfamilial relationships and molecular synapomorphies define major clades. Molecular Phylogenetics and Evolution 65, 163–173.
A mitochondrial genome phylogeny of termites (Blattodea : Termitoidae): robust support for interfamilial relationships and molecular synapomorphies define major clades.Crossref | GoogleScholarGoogle Scholar |

Chouvenc, T., Li, H.-F., Austin, J., Bordereau, C., Bourguignon, T., Cameron, S. L., Cancello, E. M., Constantino, R., Costa-Leonardo, A. M., Eggleton, P., Evans, T. A., Forchler, B., Grace, J. K., Husseneder, C., Křeček, J., Lee, C.-Y., Lee, T. R. C., Lo, N., Messenger, M., Mullins, A., Robert, A., Roisin, Y., Scheffrahn, R. H., Sillam-Dussès, D., Šobotník, J., Szalanski, A., Takematsu, Y., Vargo, E. L., Yamada, A., Yothimura, T., and Su, N.-Y. (2016). Revisiting Coptotermes (Isoptera : Rhinotermitidae): a global taxonomic road map for species validity and distribution of an economically important subterranean termite genus. Systematic Entomology 41, 299–306.
Revisiting Coptotermes (Isoptera : Rhinotermitidae): a global taxonomic road map for species validity and distribution of an economically important subterranean termite genus.Crossref | GoogleScholarGoogle Scholar |

Churchill, C. K. C., Valdéz, A., and Ó Foighil, D. (2014). Molecular and morphological systematics of neustonic nudibranchs (Mollusca : Gastropods : Glaucidae: Glaucus), with descriptions of three new cryptic species. Invertebrate Systematics 28, 174–195.
Molecular and morphological systematics of neustonic nudibranchs (Mollusca : Gastropods : Glaucidae: Glaucus), with descriptions of three new cryptic species.Crossref | GoogleScholarGoogle Scholar |

Drummond, A. J., Ho, S. Y. W., Phillips, M. J., and Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology 4, e88.
Relaxed phylogenetics and dating with confidence.Crossref | GoogleScholarGoogle Scholar |

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFagu7fO&md5=1128fe2c54a768f2b18bd3a1ecbe3c88CAS |

Emerson, A. E. (1971). Tertiary fossil species of the Rhinotermitidae (Isoptera), phylogeny of genera, and reciprocal phylogeny of associated Flagellata (Protozoa) and the Staphylinidae (Coleoptera). Bulletin of the American Museum of Natural History 146, 3.

Engel, M. S., and Delclòs, X. (2010). Primitive termites in Cretaceous amber from Spain and Canada (Isoptera). Journal of the Kansas Entomological Society 83, 111–128.
Primitive termites in Cretaceous amber from Spain and Canada (Isoptera).Crossref | GoogleScholarGoogle Scholar |

Froggatt, W. W. (1905). White ants (Termitidae). Miscellaneous Publications of the Department of Agriculture, New South Wales 874, 1–47.

Fujisawa, T., and Barraclough, T. G. (2013). Delimiting species using single-locus data and the generalized mixed yule coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62, 707–724.
Delimiting species using single-locus data and the generalized mixed yule coalescent approach: a revised method and evaluation on simulated data sets.Crossref | GoogleScholarGoogle Scholar |

Gay, F. J. (1955). A new Coptotermes and Ahamitermes (Isoptera) from Australia. Proceedings of the Linnean Society of New South Wales 79, 177–181.

Hill, G. F. (1932). Australian termites (Isoptera). Biological notes and descriptions of new species. Proceedings of the Royal Society of Victoria 44, 134–154.

Hill, G. F. (1942). ‘Termites (Isoptera) from the Australian Region.’ (Council for Scientific and Industrial Research (Australia): Melbourne, Australia.)

Ho, S. Y. W., and Phillips, M. J. (2009). Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology 58, 367–380.
Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times.Crossref | GoogleScholarGoogle Scholar |

Krishna, K., Grimaldi, D. A., Krishna, V., and Engel, M. S. (2013). Treatise on the Isoptera of the world. Bulletin of the American Museum of Natural History 377, 623–973.
Treatise on the Isoptera of the world.Crossref | GoogleScholarGoogle Scholar |

Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1ehsbg%3D&md5=60257dbe2868778a4d0b3f3c019d85e1CAS |

Lee, T. R. C., Cameron, S. L., Evans, T. A., Ho, S. Y. W., and Lo, N. (2015). The origins and radiation of Australian Coptotermes termites: from rainforest to desert dwellers. Molecular Phylogenetics and Evolution 82, 234–244.
The origins and radiation of Australian Coptotermes termites: from rainforest to desert dwellers.Crossref | GoogleScholarGoogle Scholar |

Lo, N., Eldridge, R. H., and Lenz, M. (2006). Phylogeny of Australian Coptotermes (Isoptera: Rhinotermitidae) species inferred from mitochondrial COII sequences. Bulletin of Entomological Research 96, 433–437.
| 1:CAS:528:DC%2BD28XhtFWlu7jL&md5=0a307ecb7473ca6b249892126ee6da23CAS |

Maiti, P. K. (2006). A taxonomic monograph on the world species of termites of the family Rhinotermitidae (Isoptera: Insecta). Memoirs of the Zoological Survey of India 20, 1–272.

Murphy, N. P., Adams, M., Guzik, M. T., and Austin, A. D. (2013). Extraordinary micro-endemism in Australian desert spring amphipods. Molecular Phylogenetics and Evolution 66, 645–653.
Extraordinary micro-endemism in Australian desert spring amphipods.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s7isVGitw%3D%3D&md5=9df342576229cc28c1a8241db1c86300CAS |

Padial, J. M., Miralles, A., De la Riva, I., and Vences, M. (2010). The integrative future of taxonomy. Frontiers in Zoology 7, 16.

Poinar, G. O. (2009). Description of an early Cretaceous termite (Isoptera: Kalotermitidae) and its associated intestinal protozoa, with comments on their co-evolution. Parasites & Vectors 2, 12.
Description of an early Cretaceous termite (Isoptera: Kalotermitidae) and its associated intestinal protozoa, with comments on their co-evolution.Crossref | GoogleScholarGoogle Scholar |

Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamoun, S., Sumlin, W. D., and Vogler, A. P. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595–609.
Sequence-based species delimitation for the DNA taxonomy of undescribed insects.Crossref | GoogleScholarGoogle Scholar |

R Core Team (2014). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Ratcliff, F. N., Gay, F. J., and Greaves, T. (1952). ‘Australian Termites.’ (Commonwealth Scientific and Industrial Research Organisation (CSIRO): Melbourne, Australia.)

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Roonwal, M. L. (1970). Measurements of termites (Isoptera) for taxonomic purposes. Journal of the Zoological Society of India 21, 9–66.

Scheffrahn, R. H., Carrijo, T. F., Křeček, J., Su, N.-Y., Szalanski, A. L., Austin, J. W., Chase, J. A., and Mangold, J. R. (2015). A single endemic and three exotic species of the termite genus Coptotermes (Isoptera, Rhinotermitidae) in the New World. Arthropod Systematics & Phylogeny 73, 333–348.

Schlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., and Crozier, R. H. (2010). Integrative taxonomy: a multisource approach to exploring biodiversity. Annual Review of Entomology 55, 421–438.
Integrative taxonomy: a multisource approach to exploring biodiversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVShtQ%3D%3D&md5=bd48b7260df87fe6c1a49a7f9f380984CAS |

Silvestri, F. (1909). Isoptera. In ‘Die Fauna Südwest-Australiens. Ergebnisse der Hamburger Südwest-Australischen Forschungsreise 1905. Vol. 2, Part 17’. (Eds W. Michaelsen and R. Hartmeyer.) pp. 279–314. (Gustav Fischer: Jena, Germany.)

Talavera, G., Dinca, V., and Vila, R. (2013). Factors affecting species delimitations with the GMYC model: insights from a butterfly survey. Methods in Ecology and Evolution 4, 1101–1110.
Factors affecting species delimitations with the GMYC model: insights from a butterfly survey.Crossref | GoogleScholarGoogle Scholar |

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
MEGA6: molecular evolutionary genetics analysis version 6.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKhurzP&md5=31e52c88992083420b0597f29824352bCAS |

Wasmann, E. (1900). Description of a termite associated with a pselaphid. Appendix to ‘Australian Pselaphidae’ by A. Raffay in Proceedings of the Linnean Society of New South Wales 25, 131–249.

Watson, J. A. L., and Abbey, H. M. (1993). ‘Atlas of Australian Termites.’ (CSIRO Division of Entomology: Canberra, Australia.)

Will, K. W., Mishler, B. D., and Wheeler, Q. D. (2005). The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology 54, 844–851.
The perils of DNA barcoding and the need for integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

Yang, Z., and Rannala, B. (2010). Bayesian species delimitation using multilocus species data. Proceedings of the National Academy of Sciences of the United States of America 107, 9264–9269.
Bayesian species delimitation using multilocus species data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslGrtLs%3D&md5=475bb94407ce8052350bbc7527e0cfa2CAS |