Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Cyphastrea (Cnidaria : Scleractinia : Merulinidae) in the Red Sea: phylogeny and a new reef coral species

Roberto Arrigoni A E , Michael L. Berumen A , Danwei Huang B , Tullia I. Terraneo A and Francesca Benzoni C D E
+ Author Affiliations
- Author Affiliations

A King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Science and Engineering, Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia.

B Department of Biological Sciences and Tropical Marine Science Institute, National University of Singapore, Singapore 117543, Singapore.

C Institut de Recherche pour le Développement, UMR227 CoReUs2, 101 Promenade Roger Laroque, 98848 Noumea, New Caledonia.

D Department of Biotechnologies and Biosciences, University of Milano – Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.

E Corresponding authors. Email: francesca.benzoni@unimib.it; roberto.arrigoni@kaust.edu.sa

Invertebrate Systematics 31(2) 141-156 https://doi.org/10.1071/IS16035
Submitted: 14 April 2016  Accepted: 13 September 2016   Published: 26 April 2017

Abstract

The scleractinian coral Cyphastrea is a common and widespread genus throughout the coral reefs of the Indo-Pacific. Little is known about the phylogenetic relationships within this taxon and species identification is based mainly on traditional skeletal characters, such as the number of septa, septa cycles, growth form and corallite dimensions. Here we present the first focussed reconstruction of phylogenetic relationships among Cyphastrea species, analysing 57 colonies from the Red Sea, where five morphospecies live in sympatry. Analyses based on three loci (nuclear histone H3, 28S rDNA and a mitochondrial intergenic region) reveal the existence of three well-supported molecular lineages. None of the five previously defined morphospecies are monophyletic and they cluster into two clades, suggesting the need of a systematic revision in Cyphastrea. The third lineage is described as C. magna Benzoni & Arrigoni, sp. nov., a new reef coral species collected from the northern and central Red Sea. Cyphastrea magna Benzoni & Arrigoni, sp. nov. is characterised by the largest corallite diameter among known Cyphastrea species, a wide trabecular columella >1/4 of calice width, and 12 equal primary septa. This study suggests that morphology-based taxonomy in Cyphastrea may not identify monophyletic units and strengthens the application of genetics in coral systematics.


References

Arrigoni, R., Stefani, F., Pichon, M., Galli, P., and Benzoni, F. (2012). Molecular phylogeny of the Robust clade (Faviidae, Mussidae, Merulinidae, and Pectiniidae): an Indian Ocean perspective. Molecular Phylogenetics and Evolution 65, 183–193.
Molecular phylogeny of the Robust clade (Faviidae, Mussidae, Merulinidae, and Pectiniidae): an Indian Ocean perspective.Crossref | GoogleScholarGoogle Scholar |

Bellwood, D. R., Hughes, T. P., Folke, C., and Nyström, M. (2004). Confronting the coral reef crisis. Nature 429, 827–833.
Confronting the coral reef crisis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVKltb8%3D&md5=62a56974519f1643fccee53881ddcbdbCAS |

Benzoni, F., Arrigoni, R., Stefani, F., and Stolarski, J. (2012). Systematics of the coral genus Craterastrea (Cnidaria, Anthozoa, Scleractinia) and description of a new family through combined morphological and molecular analyses. Systematics and Biodiversity 10, 417–433.
Systematics of the coral genus Craterastrea (Cnidaria, Anthozoa, Scleractinia) and description of a new family through combined morphological and molecular analyses.Crossref | GoogleScholarGoogle Scholar |

Berumen, M. L., Hoey, A. S., Bass, W. H., Bouwmeester, J., Catania, D., Cochran, J. E. M., Khahil, M. T., Miyake, S., Mughal, M. R., Spaet, J. L. Y., and Saenz-Agudelo, P. (2013). The status of coral reef ecology research in the Red Sea. Coral Reefs 32, 737–748.
The status of coral reef ecology research in the Red Sea.Crossref | GoogleScholarGoogle Scholar |

Bouwmeester, J., Benzoni, F., Baird, A. H., and Berumen, M. L. (2015). Cyphastrea kausti sp. n. (Cnidaria, Anthozoa, Scleractinia), a new species of reef coral from the Red Sea. ZooKeys 496, 1–13.
Cyphastrea kausti sp. n. (Cnidaria, Anthozoa, Scleractinia), a new species of reef coral from the Red Sea.Crossref | GoogleScholarGoogle Scholar |

Budd, A. F., and Stolarski, J. (2009). Searching for new morphological characters in the systematics of scleractinian reef corals: comparison of septal teeth and granules between Atlantic and Pacific Mussidae. Acta Zoologica 90, 142–165.
Searching for new morphological characters in the systematics of scleractinian reef corals: comparison of septal teeth and granules between Atlantic and Pacific Mussidae.Crossref | GoogleScholarGoogle Scholar |

Budd, A. F., Fukami, H., Smith, N. D., and Knowlton, N. (2012). Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zoological Journal of the Linnean Society 166, 465–529.
Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia).Crossref | GoogleScholarGoogle Scholar |

Cairns, S. D., Hoeksema, B. W., and van der Land, J. (1999). Appendix: list of extant stony corals. Atoll Research Bulletin 459, 13–46.

Carlon, D. B., Budd, A. F., Lippé, C., and Andrew, R. L. (2011). The quantitative genetics of incipient speciation: heritability and genetic correlations of skeletal traits in populations of diverging Favia fragum ecomorphs. Evolution 65, 3428–3447.
The quantitative genetics of incipient speciation: heritability and genetic correlations of skeletal traits in populations of diverging Favia fragum ecomorphs.Crossref | GoogleScholarGoogle Scholar |

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVSgt7g%3D&md5=12c15c65b143ca193ea00e1aa007f6b7CAS |

Chen, C. A., Chang, C. C., Wei, N. V., Chen, C. H., Lein, Y. T., Lin, H. E., Dai, C. F., and Wallace, C. C. (2004). Secondary structure and phylogenetics utility of the ribosomal internal transcribed spacer 2 (ITS2) in scleractinian corals. Zoological Studies (Taipei, Taiwan) 43, 759–771.
| 1:CAS:528:DC%2BD2MXktlGksw%3D%3D&md5=f4024196a72083a5aeea8e7ca017fb41CAS |

Chevalier, J. P. (1975). ‘Les Scléractiniaires de la Mélanésie Française (Nouvelle-Calédonie, Iles Chesterfield, Iles Loyauté, Nouvelle Hébrides).’ (Éditions de la Fondation Singer-Polignac: Paris, France.)

Colgan, D. J., McLauchlan, A., Wilson, G. D. F., Livingston, S. P., Edgecombe, G. D., Macaranas, J., Cassis, G., and Gray, M. R. (1998). Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology 46, 419–437.
Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution.Crossref | GoogleScholarGoogle Scholar |

Cuif, J. P., Lecointre, G., Perrin, C., Tillier, A., and Tillier, S. (2003). Patterns of septal biomineralization in Scleractinia compared with their 28S rRNA phylogeny: a dual approach for a new taxonomic framework. Zoologica Scripta 32, 459–473.
Patterns of septal biomineralization in Scleractinia compared with their 28S rRNA phylogeny: a dual approach for a new taxonomic framework.Crossref | GoogleScholarGoogle Scholar |

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWmsbfP&md5=1e151a811e335310e17f8244e6b6ccbaCAS |

DiBattista, J. D., Choat, J. H., Gaither, M. R., Hobbs, J. P., Lozano-Cortés, D. F., Myers, R., Paulay, G., Rocha, L. A., Toonen, R. J., Westneat, M., and Berumen, M. L. (2016a). On the origin of endemic species in the Red Sea. Journal of Biogeography 43, 13–30.
On the origin of endemic species in the Red Sea.Crossref | GoogleScholarGoogle Scholar |

DiBattista, J. D., Roberts, M. B., Bouwmeester, J., Bowen, B. W., Coker, D. J., Lozano‐Cortés, D. F., Choat, J. H., Gaither, M. R., Hobbs, J. P., Khalil, M. T., Kochzius, M., Myers, R. F., Paulay, G., Robitzch, V., Saenz-Agudelo, P., Salas, E., Sinclair-Taylor, T. H., Toonen, R. J., Westneat, M. W., Williams, S. T., and Berumen, M. L. (2016b). A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea. Journal of Biogeography 43, 423–439.
A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea.Crossref | GoogleScholarGoogle Scholar |

Fisher, R., O’Leary, R. A., Low-Choy, S., Mengersen, K., Knowlton, N., Brainard, R. E., and Caley, M. J. (2015). Species richness on coral reefs and the pursuit of convergent global estimates. Current Biology 25, 500–505.
Species richness on coral reefs and the pursuit of convergent global estimates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVOqtL4%3D&md5=c3ff38a223384632b963c2b958da6879CAS |

Flot, J. F., Blanchot, J., Charpy, L., Cruaud, C., Licuanan, W. Y., Nakano, Y., Payri, C., and Tillier, S. (2011). Incongruence between morphotypes and genetically delimited species in the coral genus Stylophora: phenotypic plasticity, morphological convergence, morphological stasis or interspecific hybridization? BMC Ecology 11, 22.
Incongruence between morphotypes and genetically delimited species in the coral genus Stylophora: phenotypic plasticity, morphological convergence, morphological stasis or interspecific hybridization?Crossref | GoogleScholarGoogle Scholar |

Fukami, H., Budd, A. F., Paulay, G., Solé-Cava, A., Chen, C. A., Iwao, K., and Knowlton, N. (2004). Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427, 832–835.
Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFCisLw%3D&md5=aa62564d38d841a3f83d721ebe106757CAS |

Giles, E. C., Saenz‐Agudelo, P., Hussey, N. E., Ravasi, T., and Berumen, M. L. (2015). Exploring seascape genetics and kinship in the reef sponge Stylissa carteri in the Red Sea. Ecology and Evolution 5, 2487–2502.
Exploring seascape genetics and kinship in the reef sponge Stylissa carteri in the Red Sea.Crossref | GoogleScholarGoogle Scholar |

Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696–704.
A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.Crossref | GoogleScholarGoogle Scholar |

Hellberg, M. E. (2006). No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evolutionary Biology 6, 24.
No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation.Crossref | GoogleScholarGoogle Scholar |

Hoeksema, B. W. (1989). Taxonomy, phylogeny and biogeography of mushroom corals (Scleractinia: Fungiidae). Zoölogische Verhandelingen 254, 1–295.

Huang, D., Meier, R., Todd, P. A., and Chou, L. M. (2008). Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. Journal of Molecular Evolution 66, 167–174.
Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVGjsrs%3D&md5=283f3ea615e0f0e0115f3bcaf639be9fCAS |

Huang, D., Meier, R., Todd, P. A., and Chou, L. M. (2009). More evidence for pervasive paraphyly in scleractinian corals: systematic study of Southeast Asian Faviidae (Cnidaria; Scleractinia) based on molecular and morphological data. Molecular Phylogenetics and Evolution 50, 102–116.
More evidence for pervasive paraphyly in scleractinian corals: systematic study of Southeast Asian Faviidae (Cnidaria; Scleractinia) based on molecular and morphological data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFamurrF&md5=410518a8b9bae92d6febc10766f1c883CAS |

Huang, D., Licuanan, W. Y., Baird, A. H., and Fukami, H. (2011). Cleaning up the ‘Bigmessidae’: molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae. BMC Evolutionary Biology 11, 37.
Cleaning up the ‘Bigmessidae’: molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae.Crossref | GoogleScholarGoogle Scholar |

Huang, D., Benzoni, F., Fukami, H., Knowlton, N., Smith, N. D., and Budd, A. F. (2014a). Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia). Zoological Journal of the Linnean Society 171, 277–355.
Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia).Crossref | GoogleScholarGoogle Scholar |

Huang, D., Benzoni, F., Arrigoni, R., Baird, A. H., Berumen, M. L., Bouwmeester, J., Chou, L. M., Fukami, H., Licuanan, W. Y., Lovell, E. R., Meier, R., Todd, P. A., and Budd, A. F. (2014b). Towards a phylogenetic classification of reef corals: the Indo‐Pacific genera Merulina, Goniastrea and Scapophyllia (Scleractinia, Merulinidae). Zoologica Scripta 43, 531–548.
Towards a phylogenetic classification of reef corals: the Indo‐Pacific genera Merulina, Goniastrea and Scapophyllia (Scleractinia, Merulinidae).Crossref | GoogleScholarGoogle Scholar |

Isomura, N., Iwao, K., and Fukami, H. (2013). Possible natural hybridization of two morphologically distinct species of Acropora (Cnidaria, Scleractinia) in the Pacific: fertilization and larval survival rates. PLoS One 8, e56701.
Possible natural hybridization of two morphologically distinct species of Acropora (Cnidaria, Scleractinia) in the Pacific: fertilization and larval survival rates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsVSjsbo%3D&md5=52be84ddf5ab446d9be780d6cbeff0c3CAS |

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFWisLc%3D&md5=9b63ef51572a7695e00dde761602e188CAS |

Kitahara, M. V., Fukami, H., Benzoni, F., and Huang, D. (2016). The new systematics of Scleractinia: integrating molecular and morphological evidence. In ‘The Cnidaria, Past, Present and Future: the World of Medusa and Her Sisters’. (Eds S. Goffredo and Z. Dubinsky.) pp. 41–59 (Springer: Dordrecht, Netherlands.)

Knowlton, N., and Leray, M. (2015). Exploring coral reefs using the tools of molecular genetics. In ‘Coral Reefs in the Anthropocene’. (Ed. C. Birkeland.) pp. 117–132. (Springer: Dordrecht, Netherlands.) 10.1007/978-94-017-7249-5_6

Ladner, J. T., and Palumbi, S. R. (2012). Extensive sympatry, cryptic diversity and introgression throughout the geographic distribution of two coral species complexes. Molecular Ecology 21, 2224–2238.
Extensive sympatry, cryptic diversity and introgression throughout the geographic distribution of two coral species complexes.Crossref | GoogleScholarGoogle Scholar |

Matthai, G. (1914). A revision of the recent colonial Astraeidae possessing distinct corallites. Transactions of the Linnaean Society, London, 2nd Series Zoology 17, 1–140.
A revision of the recent colonial Astraeidae possessing distinct corallites.Crossref | GoogleScholarGoogle Scholar |

Nanninga, G. B., Saenz‐Agudelo, P., Manica, A., and Berumen, M. L. (2014). Environmental gradients predict the genetic population structure of a coral reef fish in the Red Sea. Molecular Ecology 23, 591–602.
Environmental gradients predict the genetic population structure of a coral reef fish in the Red Sea.Crossref | GoogleScholarGoogle Scholar |

Ngugi, D. K., Antunes, A., Brune, A., and Stingl, U. (2012). Biogeography of pelagic bacterioplankton across an antagonistic temperature–salinity gradient in the Red Sea. Molecular Ecology 21, 388–405.
Biogeography of pelagic bacterioplankton across an antagonistic temperature–salinity gradient in the Red Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVejtLw%3D&md5=4df4356e035d95ac62adafdf8f3ec602CAS |

Raitsos, D. E., Pradhan, Y., Brewin, R. J., Stenchikov, G., and Hoteit, I. (2013). Remote sensing the phytoplankton seasonal succession of the Red Sea. PLoS One 8, e64909.
Remote sensing the phytoplankton seasonal succession of the Red Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvFWlsbk%3D&md5=996416fc4f8246a4f89b048b41c142f3CAS |

Rambaut, A., Suchard, M. A., Xie, D., and Drummond, A. J. (2014). ‘Tracer v1.6.’ Available at http://beast.bio.ed.ac.uk/Tracer/ [Accessed 13 April 2016].

Rasband, W. S. (1997). ‘ImageJ.’ Available at http://rsb.info.nih.gov/ij [Accessed 13 April 2016].

Richards, Z. T., and Hobbs, J. P. A. (2015). Hybridisation on coral reefs and the conservation of evolutionary novelty. Current Zoology 61, 132–145.
Hybridisation on coral reefs and the conservation of evolutionary novelty.Crossref | GoogleScholarGoogle Scholar |

Richards, Z. T., Berry, O., and van Oppen, M. J. H. (2016). Cryptic genetic divergence within threatened species of Acropora coral from the Indian and Pacific oceans. Conservation Genetics 17, 577.

Roberts, M. B., Jones, G. P., McCormick, M. I., Munday, P. L., Neale, S., Thorrold, S., Robitzch, V. S., and Berumen, M. L. (2016). Homogeneity of coral reef communities across 8 degrees of latitude in the Saudi Arabian Red Sea. Marine Pollution Bulletin 105, 558–565.
Homogeneity of coral reef communities across 8 degrees of latitude in the Saudi Arabian Red Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVOlsbzM&md5=d2df2975a4e25f0f4a79efb3a757382eCAS |

Romano, S. L., and Cairns, S. D. (2000). Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bulletin of Marine Science 67, 1043–1068.

Romano, S. L., and Palumbi, S. R. (1996). Evolution of scleractinian corals inferred from molecular systematics. Science 271, 640–642.
Evolution of scleractinian corals inferred from molecular systematics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XptVyiug%3D%3D&md5=548b81c37a937cab8100de386c0474f2CAS |

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Barget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Scheer, G., and Pillai, C. G. (1983). Report on the stony corals from the Red Sea. Zoologica 45, 1–198.

Schweinsberg, M., Weiss, L. C., Striewski, S., Tollrian, R., and Lampert, K. P. (2015). More than one genotype: how common is intracolonial genetic variability in scleractinian corals? Molecular Ecology 24, 2673–2685.
More than one genotype: how common is intracolonial genetic variability in scleractinian corals?Crossref | GoogleScholarGoogle Scholar |

Sheppard, C. R. C., and Sheppard, A. L. S. (1991). Corals and coral communities of Saudi Arabia. Fauna Saudi Arabia 12, 1–170.

Swofford, D. L. (2003). ‘PAUP. Phylogenetic Analysis Using Parsimony (and other methods). Version 4.’ (Sinauer Associates: Sunderland, MA.)

Tamura, K., Stecher, G., Peterson, D., Filipksi, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
MEGA6: molecular evolutionary genetics analysis version 6.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKhurzP&md5=31e52c88992083420b0597f29824352bCAS |

Terraneo, T. I., Berumen, M. L., Arrigoni, R., Waheed, Z., Bouwmeester, J., Caragnano, A., Stefani, F., and Benzoni, F. (2014). Pachyseris inattesa sp. n. (Cnidaria, Anthozoa, Scleractinia): a new reef coral species from the Red Sea and its phylogenetic relationships. ZooKeys 433, 1–30.
Pachyseris inattesa sp. n. (Cnidaria, Anthozoa, Scleractinia): a new reef coral species from the Red Sea and its phylogenetic relationships.Crossref | GoogleScholarGoogle Scholar |

Terraneo, T. I., Benzoni, F., Arrigoni, R., and Berumen, M. L. (2016). Species delimitation in the coral genus Goniopora (Scleractinia, Poritidae) from the Saudi Arabian Red Sea. Molecular Phylogenetics and Evolution 102, 278–294.
Species delimitation in the coral genus Goniopora (Scleractinia, Poritidae) from the Saudi Arabian Red Sea.Crossref | GoogleScholarGoogle Scholar |

Todd, P. A. (2008). Morphological plasticity in scleractinian corals. Biological Reviews of the Cambridge Philosophical Society 83, 315–337.
Morphological plasticity in scleractinian corals.Crossref | GoogleScholarGoogle Scholar |

Vaughan, T. W., and Wells, J. W. (1943). Revision of the suborders, families, and genera of the Scleractinia. Geological Society of America Special Papers 44, 1–345.

Veron, J. E. N. (2000). ‘Corals of the World.’ (Australian Institute of Marine Science: Townsville, Australia.)

Veron, J. E. N. (2002). ‘New Species Described in Corals of the World.’ (Australian Institute of Marine Science: Townsville, Australia.)

Veron, J. E. N., Pichon, M., and Wijsman-Best, M. (1977). ‘Scleractinia of Eastern Australia. Part II. Families Faviidae, Trachyphylliidae.’ (Australian Institute of Marine Science: Townsville, Australia.)

Vollmer, S. V., and Palumbi, S. R. (2002). Hybridization and the evolution of reef coral diversity. Science 296, 2023–2025.
Hybridization and the evolution of reef coral diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks1eqt7c%3D&md5=728df3732cfdc8c3ad013a5caa02e44dCAS |

Wallace, C. C., Done, B. J., and Muir, P. R. (2012). ‘Revision and Catalogue of Worldwide Staghorn Corals Acropora and Isopora (Scleractina: Acroporidae) in the Museum of Tropical Queensland.’ (Queensland Museum: Townsville, Australia.)

Wares, J. P. (2014). Mitochondrial cytochrome b sequence data are not an improvement for species identification in Scleractinian corals. PeerJ 2, e564.
Mitochondrial cytochrome b sequence data are not an improvement for species identification in Scleractinian corals.Crossref | GoogleScholarGoogle Scholar |

Willis, B. L., van Oppen, M. J., Miller, D. J., Vollmer, S. V., and Ayre, D. J. (2006). The role of hybridization in the evolution of reef corals. Annual Review of Ecology Evolution and Systematics 37, 489–517.
The role of hybridization in the evolution of reef corals.Crossref | GoogleScholarGoogle Scholar |