New Zealand Diabetes Cohort Study cardiovascular risk score for people with Type 2 diabetes: validation in the PREDICT cohort
Tom Robinson, C Raina Elley, Sue Wells, Elizabeth Robinson, Tim Kenealy, Romana Pylypchuk, Dale Bramley, Bruce Arroll, Sue Crengle, Tania Riddell, Shanthi Ameratunga, Patricia Metcalf and Paul Drury
Journal of Primary Health Care
4(3) 181 - 188
Published: 2012
Abstract
INTRODUCTION: New Zealand (NZ) guidelines recommend treating people for cardiovascular disease (CVD) risk on the basis of five-year absolute risk using a NZ adaptation of the Framingham risk equation. A diabetes-specific Diabetes Cohort Study (DCS) CVD predictive risk model has been developed and validated using NZ Get Checked data. AIM: To revalidate the DCS model with an independent cohort of people routinely assessed using PREDICT, a web-based CVD risk assessment and management programme. METHODS: People with Type 2 diabetes without pre-existing CVD were identified amongst people who had a PREDICT risk assessment between 2002 and 2005. From this group we identified those with sufficient data to allow estimation of CVD risk with the DCS models. We compared the DCS models with the NZ Framingham risk equation in terms of discrimination, calibration, and reclassification implications. RESULTS: Of 3044 people in our study cohort, 1829 people had complete data and therefore had CVD risks calculated. Of this group, 12.8% (235) had a cardiovascular event during the five-year follow-up. The DCS models had better discrimination than the currently used equation, with C-statistics being 0.68 for the two DCS models and 0.65 for the NZ Framingham model. DISCUSSION: The DCS models were superior to the NZ Framingham equation at discriminating people with diabetes who will have a cardiovascular event. The adoption of a DCS model would lead to a small increase in the number of people with diabetes who are treated with medication, but potentially more CVD events would be avoided. KEYWORDS: Cardiovascular disease; diabetes; prevention; risk assessment; reliability and validityhttps://doi.org/10.1071/HC12181
© CSIRO 2012