Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Empirical model for predicting concentrations of refractory hydrophobic organic compounds in digested sludge from municipal wastewater treatment plants

Randhir P. Deo A and Rolf U. Halden A B
+ Author Affiliations
- Author Affiliations

A The Biodesign Institute at Arizona State University, Center for Environmental Biotechnology, Tempe, AZ 85287, USA.

B Corresponding author. Email: halden@asu.edu

Environmental Chemistry 6(6) 544-550 https://doi.org/10.1071/EN09063
Submitted: 26 May 2009  Accepted: 29 October 2009   Published: 18 December 2009

Environmental context. Tens of thousands of manmade chemicals are discharged into municipal wastewaters on a continual basis by consumers around the world but surprisingly little is known about the occurrence and fate of these substances in the environment. The present study furnishes an easily applicable model that can help to predict the presence and concentration of manmade chemicals in digested municipal sludge (biosolids) destined for disposal on land. The new tool can be used to prescreen and identify in chemical databases potential environmental pollutants.

Abstract. An empirical model is presented allowing for the prediction of concentrations of hydrophobic organic compounds (HOCs) prone to accumulate and persist in digested sludge (biosolids) generated during conventional municipal wastewater treatment. The sole input requirements of the model are the concentrations of the individual HOCs entering the wastewater treatment plant in raw sewage, the compound’s respective pH-dependent octanol-water partitioning coefficient (DOW), and an empirically determined fitting parameter (pfit) that reflects persistence of compounds in biosolids after accounting for all potential removal mechanisms during wastewater treatment. The accuracy of the model was successfully confirmed at the 99% confidence level in a paired t test that compared predicted concentrations in biosolids to empirical measurements reported in the literature. After successful validation, the resultant model was applied to predict levels of various HOCs for which occurrence data in biosolids thus far are lacking.

Additional keywords: biosolids, emerging contaminants, persistence, sorption.


Acknowledgements

This study was made possible in part by grant 1R01ES015445 of the National Institute of Environmental Health Sciences (NIEHS). Additional support was provided by the Johns Hopkins University Center for a Livable Future. We thank Kristin McClellan and Jochen Heidler for providing analytical data and valuable input in discussions.


References


[1]   B. Clark , J. G. Henry , D. Mackay , Fugacity analysis and model of organic chemical fate in a sewage treatment plant. Environ. Sci. Technol. 1995 , 29,  1488.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  [Verified 12 February 2009]

[6]   S. J. Khan , J. E. Ongerth , Estimating of pharmaceutical residues in primary and secondary sewage sludge based on quantities of use and fugacity modeling. Water Sci. Technol. 2002 , 46,  105.
        |  CAS |  open url image1

[7]   Painter H. A., Chemical, physical and biological characteristics of wastes and waste effluents, in Water and water pollution handbook (Ed. L. L. Ciacco) 1971, Vol. 1, pp. 329–364 (Marcel Dekker: New York).

[8]   L. Wang , R. Govind , R. A. Dobbs , Sorption of toxic organic compounds on wastewater solids: mechanism and modeling. Environ. Sci. Technol. 1993 , 27,  152.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   R. R. Birch , Prediction of the fate of detergent chemicals during sewage treatment. J. Chem. Technol. Biotechnol. 1991 , 50,  411.
        |  CAS |  open url image1

[10]   Clark B. E., A predictive fate model for organic chemicals in a water pollution control plant. 1986 MSc thesis, University of Toronto, ON.

[11]   Holman W. F., Estimating the environmental concentrations of consumer product chemicals, in American Society of Testing Materials, Special Technical Publication 737 1981, pp. 159–182 (ASTM: Philadelphia, PA).

[12]   D. C. McAvoy , C. P. L. Grady , J. Blok , T. C. J. Feijtel , T. W. Federle , R. J. Larson , A simplified modeling approach using microbial growth kinetics for predicting exposure concentration of organic chemicals in treated wastewater effluents. Chemosphere 1998 , 36,  2291.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[13]   E. Namkung , B. E. Rittmann , Estimating volatile organic compound emissions from publically owned treatment works. J. Water Pollut. Control Fed. 1987 , 59,  670.
        |  CAS |  open url image1

[14]   J. Struijs , J. Stoltenkamp , D. Van De Meent , A spreadsheet-based box model to predict the fate of xenobiotics in a municipal wastewater treatment plant. Water Res. 1991 , 25,  891.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[15]   C. E. Cowan , R. J. Larson , T. C. J. Feijtel , R. A. Rapaport , An improved model for predicting the fate of consumer product chemicals in wastewater treatment plants. Water Res. 1993 , 27,  561.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[16]   J. Heidler , R. U. Halden , Meta-analysis of mass balances examining chemical fate during wastewater treatment. Environ. Sci. Technol. 2008 , 42,  6324.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[17]   A. Göbel , A. Thomsen , C. S. Mcardell , A. Joss , W. Giger , Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environ. Sci. Technol. 2005 , 39,  3981.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[18]   X. S. Miao , J. J. Yang , C. D. Metcalfe , Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant. Environ. Sci. Technol. 2005 , 39,  7469.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[19]   H. Andersen , H. Siegrist , B. Halling-Sorensen , T. A. Ternes , Fate of estrogens in a municipal sewage treatment plant. Environ. Sci. Technol. 2003 , 37,  4021.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[20]   O. Braga , G. A. Smythe , A. I. Schafer , A. J. Feitz , Fate of steroid estrogens in Australian inland and coastal wastewater treatment plants. Environ. Sci. Technol. 2005 , 39,  3351.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[21]   O. Braga , G. A. Smythe , A. I. Schafer , A. J. Feitz , Fate of steroid estrogens in Australian inland and coastal wastewater treatment plants. Environ. Sci. Technol. 2005 , 39,  7344.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[22]   J. Heidler , A. Sapkota , R. U. Halden , Partitioning, persistence, and accumulation in digested sludge of the topical antiseptic triclocarban during wastewater treatment. Environ. Sci. Technol. 2006 , 40,  3634.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[23]   J. Heidler , R. U. Halden , Mass balance assessment of triclosan removal during conventional sewage treatment. Chemosphere 2007 , 66,  362.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[24]   H. Keller , K. Xia , A. Bhandari , Occurrence and degradation of estrogenic nonylphenol and its precursors in northeast Kansas wastewater treatment plants. Pract. Period. Hazard. Toxic Radioact. Waste Manage. 2003 , 7,  203.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[25]   K. Bester , Retention characteristics and balance assessment for two polycyclic musk fragrances (HHCB and AHTN) in a typical German sewage treatment plant. Chemosphere 2004 , 57,  863.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[26]   J. J. Yang , C. D. Metcalfe , Fate of synthetic musks in a domestic wastewater treatment plant and in an agricultural field amended with biosolids. Sci. Total Environ. 2006 , 363,  149.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[27]   J. L. Reiner , J. D. Berset , K. Kannan , Mass flow of polycyclic musks in two wastewater treatment plants. Arch. Environ. Contam. Toxicol. 2007 , 52,  451.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[28]   K. G. Karthikeyan , M. T. Meyer , Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci. Total Environ. 2006 , 361,  196.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[29]   A. L. Spongberg , J. D. Witter , Pharmaceutical compounds in the wastewater process stream in Northwest Ohio. Sci. Total Environ. 2008 , 397,  148.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[30]   R. A. Trenholm , B. J. Vanderford , J. E. Drewes , S. A. Snyder , Determination of household chemicals using gas chromatography and liquid chromatography with tandem mass spectrometry. J. Chromatogr. A 2008 , 1190,  253.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[31]   L. Lishman , S. A. Smyth , K. Sarafin , S. Kleywegt , J. Toito , T. Peart , B. Lee , M. Servos , M. Beland , P. Seto , Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Sci. Total Environ. 2006 , 367,  544.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[32]   T. A. Ternes , A. Joss , H. Siegrist , Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ. Sci. Technol. 2004 , 38,  392A.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[33]   D. Vasudevan , G. L. Bruland , B. S. Torrance , V. G. Upchurch , A. A. MacKay , pH-dependent ciprofloxacin sorption to soils: interaction mechanisms and soil factors influencing sorption. Geoderma 2009 , 151,  68.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[34]   C. D. Adams , Modeling the fate of pharmaceuticals and personal care products in sewage treatment plants. Pract. Period. Hazard. Toxic Radioact. Waste Manage. 2008 , 12,  2.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[35]   M. Alexander , How toxic are toxic chemicals in soil. Environ. Sci. Technol. 1995 , 29,  2713.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[36]   P. B. Hatzinger , M. Alexander , Effect of aging of chemicals in soil on their biodegradability and extractability. Environ. Sci. Technol. 1995 , 29,  537.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[37]   C. G. Daughton , T. A. Ternes , Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ. Health Perspect. 1999 , 107,  907.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[38]   M. J. M. Wells , D.-O. W. Log , Key to understanding and regulating wastewater-derived contaminants. Environ. Chem. 2006 , 3,  439.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[39]   R. P. Deo , R. U. Halden , Effect of sample filtration on the quality of monitoring data reported for organic compounds during wastewater treatment. J. Environ. Monit. 2009 ,
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[40]   Harris D. C., Quantitative Chemical Analysis, 2nd edn 1999 (W. H. Freeman & Company: New York).