Copper adsorption on humic acid coated gibbsite: comparison with single sorbent systems
Juan Antelo A B , Sarah Fiol A , Silvia Mariño A , Florencio Arce A , Dora Gondar A and Rocio Lopez AA Department of Physical Chemistry, University of Santiago de Compostela, Avenida de las Ciencias s/n, E-15782 Santiago de Compostela, Spain.
B Corresponding author. Email: juan.antelo@usc.es
Environmental Chemistry 6(6) 535-543 https://doi.org/10.1071/EN09066
Submitted: 27 May 2009 Accepted: 28 October 2009 Published: 18 December 2009
Environmental context. Adsorption processes control the mobility and bioavailability of nutrients and contaminants in soils, sediments and aquatic systems. Natural organic matter and aluminium oxides are important reactive materials present in natural systems and their mutual interaction may alter the surface properties of both materials, playing an important role on the fate of different contaminants, such as copper, in the environment. The present study illustrates the importance of these interactions, showing that the presence of natural organic matter has a synergic effect on the copper adsorption on the aluminium oxide surface.
Abstract. Copper adsorption processes on aluminium oxides may significantly control the mobility and transport of copper ions in soils and surface waters. The binding of protons and copper to humic acid (HA) and to gibbsite as single sorbent systems was investigated and the results then used to test the validity of the Linear Additivity Model (LAM) for describing copper binding to gibbsite/HA systems. More copper was adsorbed in the gibbsite/HA/Cu2+ ternary system, at pH 4 and 6 and ionic strength 0.1 M, than in the corresponding binary systems. Although copper adsorption on gibbsite at pH 4 is rather small, the enhancement in sorption was noteworthy, and can be attributed to the formation of ternary complexes and changes in the electrostatic potentials at the mineral surface or at the HA as a result of their mutual interaction. The LAM predicted satisfactorily the experimental results at pH 6, whereas it underestimated the copper binding at pH 4.
Additional keywords: aluminium oxide, CD-MUSIC, humic acid, NICA–Donnan.
Acknowledgements
The authors are grateful to Prof. P. Bermejo from the Analytical Chemistry Department of the University of Santiago de Compostela (USC) for the ICP-OES measurements and to Prof. F. Guitián from the Ceramic Institute of the USC for the BET measurements. This work was supported through the Ministerio de Educación y Ciencia under the research project CTM2005–02108/TECNO.
[1]
T. H. Yoon ,
S. B. Johnson ,
G. B. Brown ,
Adsorption of organic matter at mineral/water interfaces. IV. Adsorption of humic substances at boehmite/water interfaces and impact on boehmite dissolution.
Langmuir 2005
, 21, 5002.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[2]
[3]
[4]
C. J. Milne ,
D. G. Kinniburgh ,
E. Tipping ,
Generic NICA–Donnan model parameters for proton binding by humic substances.
Environ. Sci. Technol. 2001
, 35, 2049.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[5]
C. J. Milne ,
D. G. Kinniburgh ,
W. H. Van Riemsdijk ,
E. Tipping ,
Generic NICA–Donnan model parameters for metal-ion binding by humic substances.
Environ. Sci. Technol. 2003
, 37, 958.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[6]
[7]
J. M. Zachara ,
C. T. Resch ,
S. C. Smith ,
Influence of humic substances on Co2+ sorption by a subsurface mineral separate and its mineralogic components.
Geochim. Cosmochim. Acta 1994
, 58, 553.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[8]
M. A. Simeoni ,
B. D. Batts ,
C. McRae ,
Effect of groundwater fulvic acid on the adsorption of arsenate by ferrihydrite and gibbsite.
Appl. Geochem. 2003
, 18, 1507.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[9]
M. Ponthieu ,
F. Julliot ,
T. Hiemstra ,
W. H. Van Riemsdijk ,
M. F. Benedetti ,
Metal ion binding to iron oxides.
Geochim. Cosmochim. Acta 2006
, 70, 2679.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[10]
D. Gondar ,
A. Iglesias ,
R. López ,
S. Fiol ,
J. M. Antelo ,
F. Arce ,
Copper binding by peat fulvic and humic acids extracted from two horizons of an ombrotrophic peat bog.
Chemosphere 2006
, 63, 82.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[11]
L. P. Weng ,
W. H. Van Riemsdijk ,
L. K. Koopal ,
T. Hiemstra ,
Ligand and charge distribution (LCD) model for the description of fulvic acid adsorption to goethite.
J. Colloid Interface Sci. 2006
, 302, 442.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[12]
L. P. Weng ,
L. K. Koopal ,
T. Hiemstra ,
J. C. L. Meeussen ,
W. H. Van Riemsdijk ,
Interactions of calcium and fulvic acid at the goethite-water interface.
Geochim. Cosmochim. Acta 2005
, 69, 325.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[13]
L. P. Weng ,
W. H. Van Riemsdijk ,
T. Hiemstra ,
Cu2+ and Ca2+ adsorption to goethite in the presence of fulvic acids.
Geochim. Cosmochim. Acta 2008
, 72, 5857.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[14]
L. P. Weng ,
W. H. Van Riemsdijk ,
T. Hiemstra ,
Adsorption of humic acids onto goethite: effects of molar mass, pH and ionic strength.
J. Colloid Interface Sci. 2007
, 314, 107.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[15]
M. Camps Arbestain ,
C. Mourenza ,
E. Álvarez ,
F. Macías ,
Influence of parent material and soil type on the root chemistry of forest species grown on acid soils.
For. Ecol. Manage. 2004
, 193, 307.
| Crossref | GoogleScholarGoogle Scholar |
[16]
[17]
R. López ,
S. Fiol ,
J. M. Antelo ,
F. Arce ,
Analysis of the effect of concentration on the acid-base properties of soil fulvic acid. Conformational changes.
Colloids Surf. A 2003
, 226, 1.
| Crossref | GoogleScholarGoogle Scholar |
[18]
B. A. Manning ,
S. Goldberg ,
Modeling competitive adsorption with phosphate and molybdate on oxide minerals.
Soil Sci. Soc. Am. J. 1996
, 60, 121.
|
CAS |
[19]
J. Antelo ,
M. Avena ,
S. Fiol ,
R. López ,
F. Arce ,
Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface.
J. Colloid Interface Sci. 2005
, 285, 476.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[20]
I. Heidmann ,
I. Christl ,
R. Kretzschmar ,
Sorption of Cu and Pb to kaolinite-fulvic acid colloids: Assessment of sorbent interactions.
Geochim. Cosmochim. Acta 2005
, 69, 1675.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[21]
T. Hiemstra ,
W. H. Van Riemsdijk ,
A surface structural approach to ion adsorption: The Charge Distribution (CD) Model.
J. Colloid Interface Sci. 1996
, 179, 488.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[22]
T. Hiemstra ,
H. Yong ,
W. H. Van Riemsdijk ,
Interfacial charging phenomena of aluminum (hydr)oxides.
Langmuir 1999
, 15, 5942.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[23]
J. Rosenqvist ,
P. Persson ,
S. Sjöberg ,
Protonation and charging of nanosized gibbsite (α-Al(OH)3) particles in aqueous suspension.
Langmuir 2002
, 18, 4598.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[24]
R. Weerasooriya ,
B. Dharmasena ,
D. Alutphatabendi ,
Copper-gibbsite interactions: an application of 1-pK surface complexation model.
Colloids Surf. A 2000
, 170, 65.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[25]
T. W. Chang ,
M. K. Wang ,
L. Y. Jang ,
An extended X-ray absorption spectroscopy study of copper(II) sorption by oxides.
Geoderma 2005
, 129, 211.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[26]
[27]
[28]
M. C. Jodin ,
F. Gaboriaud ,
B. Humbert ,
Limitations of potentiometric studies to determine the surface charge of gibbsite γ-Al(OH)3 particles.
J. Colloid Interface Sci. 2005
, 287, 581.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[29]
X. Yang ,
Z. Sun ,
D. Wang ,
W. Forsling ,
Surface acid-base properties and hydration/dehydration mechanisms of aluminum (hydr)oxides.
J. Colloid Interface Sci. 2007
, 308, 395.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[30]
M. K. Ridley ,
M. L. Machesky ,
D. J. Wesolowski ,
D. A. Palmer ,
Surface complexation of neodymium at the rutile-water interface: A potentiometric and modeling study in NaCl media to 250°C.
Geochim. Cosmochim. Acta 2005
, 69, 63.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[31]
T. Saito ,
L. K. Koopal ,
S. Nagasaki ,
S. Tanaka ,
Analysis of copper binding in the ternary system Cu2+/humic acid/goethite at neutral to acidic pH.
Environ. Sci. Technol. 2005
, 39, 4886.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[32]
A. W. P. Vermeer ,
J. K. McCulloch ,
W. H. Van Riemsdijk ,
L. K. Koopal ,
Metal ion adsorption to complexes of humic acid and metal oxides: deviations from the additivity rule.
Environ. Sci. Technol. 1999
, 33, 3892.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[33]
I. Christl ,
R. Kretzschmar ,
Interaction of copper and fulvic acid at the hematite-water interface.
Geochim. Cosmochim. Acta 2001
, 65, 3435.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[34]
S. B. Johnson ,
T. H. Yoon ,
G. E. Brown ,
Adsorption of organic matter at mineral/water interfaces. 5. Effects of adsorbed natural organic matter analogues on mineral dissolution.
Langmuir 2005
, 21, 2811.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[35]
J. P. Fitts ,
P. Persson ,
G. B. Brown ,
G. E. Parks ,
Structure and bonding of Cu(II)-glutamate complexes at the γ-Al2O3–Water Interface.
J. Colloid Interface Sci. 1999
, 220, 133.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[36]
T. E. Alcacio ,
D. Hesterberg ,
J. W. Chou ,
J. D. Martin ,
S. Beauchemin ,
D. E. Sayers ,
Molecular scale characteristics of Cu(II) bonding in goethite-humate complexes.
Geochim. Cosmochim. Acta 2001
, 65, 1355.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[37]
E. Tipping ,
J. R. Griffith ,
J. Hilton ,
The effect of adsorbed humic substances on the uptake of copper(II) by goethite.
Croat. Chem. Acta 1983
, 56, 613.
|
CAS |
[38]
T. Saito ,
L. K. Koopal ,
W. H. Van Riemsdijk ,
S. Nagasaki ,
S. Tanaka ,
Adsorption of humic acid on goethite: Isotherms, charge, adjustments, and potential profile.
Langmuir 2004
, 20, 689.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |