Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Dissolution kinetics of meta-torbernite under circum-neutral to alkaline conditions

Dawn M. Wellman A C , Bruce K. McNamara A , Diana H. Bacon A , Elsa A. Cordova A , Ruby M. Ermi A and Laken M. Top A B
+ Author Affiliations
- Author Affiliations

A Pacific Northwest National Laboratory, PO Box 999, K3-62, Richland, WA 99352, USA.

B University of Idaho, Department of Chemistry, Renfew Hall, PO Box 442343, Moscow, ID 83844, USA.

C Corresponding author. Email: dawn.wellman@pnl.gov

Environmental Chemistry 6(6) 551-560 https://doi.org/10.1071/EN09046
Submitted: 21 April 2009  Accepted: 29 October 2009   Published: 18 December 2009

Environmental context. Uranium-phosphate minerals have been identified as a long-term controlling phase that limit the mobility of uranium to groundwater in many contaminated subsurface environments. Complex, coupled processes confound the ability to isolate the rates attributed to individual processes. Results of this investigation provide the necessary information to refine current prediction on the release and long-term fate of uranium in subsurface environments.

Abstract. The purpose of this investigation was to conduct a series of single-pass flow-through (SPFT) tests to (1) quantify the effect of temperature (23–90°C) and pH (6–10) on meta-torbernite dissolution; (2) compare the dissolution of meta-torbernite to other autunite-group minerals; and (3) evaluate the effect of aqueous phosphate on the dissolution kinetics of meta-torbernite. Results presented here illustrate meta-torbernite dissolution rates increase by ~100× over the pH interval of 6 to 10, irrespective of temperature. The power law coefficient for meta-torbernite, η = 0.59 ± 0.07, is greater than that quantified for Ca-meta-autunite, η = 0.42 ± 0.12. This suggests the stability of meta-torbernite is greater than that of meta-autunite, which is reflected in the predicted stability constants. The rate equation for the dissolution of meta-torbernite as a function of aqueous phosphate concentration is log rdissol (mol m–2 s–1) = –4.7 × 10–13 + 4.1 × 10–10[PO43–].


Acknowledgements

Funding for this project was provided by the USA Department of Energy (DOE), Office of Environmental Management, EM-20 Environmental Cleanup and Acceleration (Mark Gilbertson); and by Fluor Hanford, Inc. (Jane Borghese). This work was conducted at Pacific Northwest National Laboratory, operated by Battelle for the USA Department of Energy under Contract DE-AC06–76RL01830. The authors gratefully acknowledge and thank the following individuals for their support in various aspects of this investigation: Keith Geiszler and Mike Lindberg for their planning and support of analytical work; Eric Clayton for conducting ICP-MS analyses; Igor Kutnyakov for conducting select X-ray diffraction and carbon analyses; Emily Richards for organising and assisting with single-pass flow-through testing; and Chase Bovaird for his support and assistance with various aspects of this investigation.


References


[1]   E. C. Buck , N. R. Brown , N. L. Dietz , Contaminant uranium phases and leaching at the Fernald site in Ohio. Environ. Sci. Technol. 1996 , 30,  81.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[2]   D. E. Morris , P. G. Allen , J. M. Berg , C. J. Chisholm-Brause , S. D. Conradson , R. J. Donohoe , N. J. Hess , J. A. Musgrave , C. D. Tait , Speciation of uranium in Fernald soils by molecular spectroscopic methods: characterization of untreated soils. Environ. Sci. Technol. 1996 , 30,  2322.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[3]   V. C. Tidwell , D. E. Morris , J. C. Cunnane , S. Y. Lee , Characterizing soils contaminated with heavy metals: a uranium contamination case study. Rem. J. 1996 , 6,  81.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   Buck E. C., Dietz N. L., Bates J. K., Cunnane J. C., Uranium-contaminated soils: Ultramicrotomy and electron beam analysis, ANL/CMT/PP-82412 1994 (Argonne National Laboratory: Argonne, IL).

[5]   Buck E. C., Dietz N. L., Fortner J. A., Bates J. K., Brown N. R., Characterization of uranium- and plutonium-contaminated soils by electron microscopy, ANL/CMT/CP-85758; CONF-950216–65 1995 (Argonne National Laboratory: Argonne, IL).

[6]   Y. Roh , S. R. Lee , S.-K. Choi , M. P. Elless , S. Y. Lee , Physicochemical and mineralogical characterization of uranium-contaminated soils. Soil and Sediment Contamination 2000 , 9,  463.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[7]   J. G. Catalano , J. P. McKinley , J. M. Zachara , S. C. Heald , S. C. Smith , G. E. Brown , Changes in uranium speciation through a depth sequence of contaminated Hanford sediments. Environ. Sci. Technol. 2006 , 40,  2517.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[8]   Y. Arai , M. A. Marcus , N. Tamura , J. A. Davis , J. M. Zachara , Spectroscopic evidence for uranium bearing precipitates in vadose zone sediments at the Hanford 300-area site. Environ. Sci. Technol. 2007 , 41,  4633.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[9]   J. P. McKinley , J. M. Zachara , J. Wan , D. E. McCready , S. M. Heald , Geochemical controls on contaminant uranium in vadose Hanford formation sediments at the 200 area and 300 area, Hanford Site, Washington. Vadose Zone Journal 2007 , 6,  1004.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[10]   Kaplan D. I., Serne R. J., Distribution coefficient values describing iodine, neptunium, selenium, technetium, and uranium sorption to Hanford sediments, PNL-10379, Sup. 1. 1995 (Pacific Northwest Laboratory: Richland, WA).

[11]   G. Bernhard , G. Geipel , T. Riech , V. Brendler , S. Amayri , H. Nitsche , Uranyl(VI) carbonate complex formation: Validation of the Ca2UO2(CO3)3 (aq) species. Radiochimica Acta 2001 , 89,  511.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[12]   S. N. Kalmykov , G. R. Choppin , Mixed Ca2+/UO22+/CO32– complex formation at different ionic strengths. Radiochimica Acta 2000 , 88,  603.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[13]   D. L. Clark , D. E. Hobart , M. P. Neu , Actinide carbonate complexes and their importance in actinide environmental chemistry. Chem. Rev. 1995 , 95,  25.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[14]   Grenthe I., Fuger J., Konings R. J. M., Lemire R. J., Muller A. B., Nguyen-Trung C., Wanner H., Chemical Thermodynamics of Uranium (Eds H. Wanner, I. Forest) 1992, Chemical Thermodynamics series, vol. 1 (Elsevier: New York).

[15]   D. Read , T. A. Lawless , R. J. Sims , K. R. Butter , Uranium migration through intact sandstone cores. J. Contam. Hydrol. 1993 , 13,  277.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[16]   S. C. Brooks , J. K. Fredrickson , S. L. Carroll , D. W. Kennedy , J. M. Zachara , J. M. Plymale , A. E. Kelly , K. M. Kemner , S. Fendorf , Inhihition of bacterial U(VI) reduction by calcium. Environ. Sci. Technol. 2003 , 37,  1850.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[17]   J. G. Catalano , S. C. Heald , J. M. Zachara , G. E. Brown , Spectroscopic and diffraction study of uranium speciation in contaminated vadose zone sediments from the Hanford site, Washington state. Environ. Sci. Technol. 2004 , 38,  2822.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[18]   Z. Wang , J. M. Zachara , P. L. Gassman , C. Liu , O. Qafoku , W. Yantasee , J. G. Catalano , Fluorescence spectroscopy of U(VI)-silicates and U(VI)-contaminated Hanford sediment. Geochim. Cosmochim. Acta 2005 , 69,  1391.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[19]   J. E. Stubbs , L. A. Veblen , D. C. Elbert , J. M. Zachara , J. A. Davis , D. R. Veblen , Newly recognized hosts for uranium in the Hanford Site vadose zone. Geochim. Cosmochim. Acta 2008 , 73,  1563.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   D. M. Singer , J. M. Zachara , G. E. Brown , Uranium speciation as a function of depth in contaminated Hanford sediments – a micro-XRF, micro-XRD, and micro- and bulk-XAFS study. Environ. Sci. Technol. 2009 , 43,  630.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[21]   N. Qafoku , J. M. Zachara , C. Liu , P. L. Gassman , O. S. Qafoku , S. C. Smith , Kinetic desorption and sorption of U(VI) during reactive transport in a contaminated Hanford sediment. Environ. Sci. Technol. 2005 , 39,  3157.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[22]   Serne R. J., Brown C. F., Schaef H. T., Pierce E. M., Lindberg M. J., Wang Z., Gassman P. L., Catalano J. G., 300 area uranium leach and adsorption project, PNNL-14022 2002 (Pacific Northwest Laboratory: Richland, WA).

[23]   C. Liu , J. M. Zachara , O. Qafoku , J. P. McKinley , S. C. Heald , Z. Wang , Dissolution of uranyl microprecipitates in subsurface sediments at Hanford site, USA. Geochim. Cosmochim. Acta 2004 , 68,  4519.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[24]   C. Liu , J. M. Zachara , W. Yantasee , P. D. Majors , J. P. McKinley , Microscopic reactive diffusion of uranium in the contaminated sediments at Hanford, United States. Water Resour. Res. 2006 , 42,  W12420.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[25]   E. S. Ilton , N. P. Qafoku , C. Liu , D. A. Moore , J. M. Zachara , Advective removal of intraparticle uranium from contaminated vadose zone sediments, Hanford, U.S. Environ. Sci. Technol. 2008 , 42,  1565.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[26]   D. M. Wellman , K. M. Gunderson , J. I. Icenhower , S. W. Forrester , Dissolution kinetics of synthetic and natural meta-autunite minerals, X3–nn+[(UO2)(PO4)]2·xH2O, under acidic conditions. Geochem. Geophys. Geosyst. 2007 , 8,  Q11001.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[27]   D. M. Wellman , J. P. Icenhower , A. P. Gamerdinger , S. W. Forrester , Effects of pH, temperature, and aqueous organic material on the dissolution kinetics of meta-autunite minerals, (Na, Ca)2–1[(UO2)(PO4)]2·3H2O. Am. Mineral. 2006 , 91,  143.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[28]   Giammar D. E., Geochemistry of uranium at mineral-water interfaces: rates of sorption-desorption and dissolution-precipitation reactions 2001, Ph.D. dissertation, California Institute of Technology, Pasadena, CA.

[29]   S. Brunauer , P. H. Emmett , E. Teller , Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938 , 60,  309.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[30]   Wolery T. W., Jarek R. L., Eq3/6, theoretical manual, user’s guide, and related documentation (version 8.0) 2003 (Sandia National Laboratory: Albuquerque).

[31]   McGrail P. B., Icenhower J. P., Martin P. F., Rector D. R., Schaef H. T., Rodriguez E. A., Steele J. L., Low-activity waste glass studies: FY2000 summary report, PNNL-13381 2000 (Pacific Northwest National Laboratory: Richland, WA).

[32]   P. B. McGrail , W. L. Ebert , A. J. Bakel , D. K. Peeler , Measurement of kinetic rate law parameters on a Na-Ca-Al borosilicate glass for low-activity waste. J. Nucl. Mater. 1997 , 249,  175.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[33]   Langmuir D., Aqueous Environmental Chemistry 1997 (Prentice Hall: Upper Saddle River, NJ, USA).

[34]   D. Ross , H. T. Evans , Studies of the torbernite minerals (II): The crystal structure of meta-torbernite. Am. Mineral. 1964 , 49,  1603.
        |  CAS |  open url image1

[35]   A. G. Sowder , S. B. Clark , R. A. Fjeld , Dehydration of synthetic autunite hydrates. Radiochimica Acta 2000 , 88,  533.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[36]   J. Beintema , On the composition and crystallography of autunite and the meta-autunites. Recl. Trav. Chim. Pay. B 1938 , 57,  155.
        |  CAS |  open url image1

[37]   Smith J., Smith D. K.Jr, Uranium mineralogy, in Uranium Geochemistry, Mineralogy, Geology, Exploration, and Resources (Eds B. DeVivo, F. Ippolito, G. Capaldi, P. R. Simpson) 1984, pp. 43–88 (Institute of Mining and Metallurgy: London).

[38]   R. Vochten , M. Deliens , Transformation of curite into metaautunite paragenesis and electrokinetic properties. Phys. Chem. Miner. 1980 , 6,  129.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[39]   ICDD powder diffraction file, PDF-4+, 2008 (International Centre for Diffraction Data: Newtown Square, PA).

[40]   P. C. Burns , M. L. Miller , R. C. Ewing , U6+ minerals and inorganic phases: a comparison and hierarchy of crystal structures. Can. Mineral. 1996 , 34,  845.
        |  CAS |  open url image1

[41]   M. Ross , H. T. Evans , Studies of the torbernite mineral (I): the crystal structure of abernathyite and the structurally related compounds NH4(UO2AsO4) 3H2O and K(H3O)(UO2AsO4)2 6H2O. Am. Mineral. 1964 , 49,  1578.
        |  CAS |  open url image1

[42]   Nagy K. L., Chemical Weathering Rates of Silicate Minerals (Eds A. F. White, S. L. Brantley) 1995 (Mineralogical Society of America: Washington, DC).

[43]   Burns P. C., The crystal chemistry of uranium, in Uranium: Mineralogy, Geochemistry and the Environment, Reviews in Mineralogy (Eds P. C. Burns, R. J. Finch) 1999, Vol. 38, pp. 23–89 (Mineralogical Society of America: Washington, DC).

[44]   Nriagu J. O., Moore P. B. (Eds), Phosphate Minerals 1984 (Springer-Verlag: Berlin, Germany).

[45]   E. I. Sergeyeva , A. A. Nikitin , I. L. Khodakovkiy , G. B. Naumov , Experimental investigation of equilibria in the system UO3-CO2H2O in 25–200°C temperature interval. Geochem. Int. 1972 , 9,  900.
         open url image1

[46]   D. Langmuir , Uranium solution-mineral equilbria at low temperatures with applications to sedimentary ore deposits. Geochim. Cosmochim. Acta 1978 , 42,  547.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[47]   A. K. Alwan , P. A. Williams , The aqueous chemistry of uranium minerals. Part 2. Minerals of the liebigite group. Mineral. Mag. 1980 , 43,  665.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[48]   P. A. G. O’Hare , J. Boerio , H. R. Hoekstra , Thermochemistry of uranium compounds: VII. Solution caolrimetry of alpha and beta-Na2UO4, standard enthalpy of formation of beta-Na2UO4 and the enthalpy of the alpha to beta transition at 298.15 K. J. Chem. Thermodyn. 1976 , 8,  845.
        |  CAS | | Crossref |  open url image1

[49]   P. A. G. O’Hare , B. M. Lewis , S. N. Nguyen , Thermochemistry of uranium compounds XVII. Standard molar enthalpy of formation at 298.15 K of dehydrated schoepite UO3·0.9H2O. Thermodynamics of (schoepite + dehydrated scheopite + water). J. Chem. Thermodyn. 20,  1287.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[50]   R. Vochten , Transformation of cherikovite and sodium autunite into lehnerite. Am. Mineral. 1990 , 75,  221.
        |  CAS |  open url image1

[51]   S. N. Nguyen , R. J. Silva , H. C. Weed , J. Andrews , E. John , Standard Gibbs free energies of formation at the temperature 303.15 K of four uranyl silicates: soddyite, uranophane, sodium boltwoodite, and sodium weeksite. J. Chem. Thermodyn. 1992 , 24,  359.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[52]   Finch R. J., Thermodynamic stabilities of U(VI) minerals: Estimated and observed relationships, in Material Research Society Symposium Proceedings, Boston, Massachusetts, 2–6 December 1995 (Materials Research Society: Warrendale, PA).

[53]   F. Chen , R. C. Ewing , S. B. Clark , The Gibbs free energies and enthalpies of formation of U6+ phases: an empirical method of prediction. Am. Mineral. 1999 , 84,  650.
        |  CAS |  open url image1