A Straightforward Methodology for the Synthesis of α,ω-Telechelic Poly(dimethylsiloxane)s
María M. Soledad Lencina A , Franco L. Redondo B , Camila Müller B , Vivina Hanazumi B , Cristian Vitale C , Mario D. Ninago B D , Daniel A. Vega A , Marcelo A. Villar B and Andrés E. Ciolino B EA Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Alem 1253, Bahía Blanca 8000, Argentina.
B Planta Piloto de Ingeniería Química (PLAPIQUI), Departamento de Ingeniería Química, Universidad Nacional del Sur (DIQ-UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino ‘La Carrindanga’ Km. 7, Bahía Blanca 8000, Argentina.
C Instituto de Química del Sur (INQUISUR), Departamento de Química, Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Alem 1253, Bahía Blanca 8000, Argentina.
D Facultad de Ciencias Aplicadas a la Industria (FCAI), Departamento de Ingeniería Química, Universidad Nacional de Cuyo, Bernardo de Irigoyen 375, San Rafael 5600, Mendoza, Argentina.
E Corresponding author. Email: aciolino@plapiqui.edu.ar
Australian Journal of Chemistry 71(3) 160-169 https://doi.org/10.1071/CH17508
Submitted: 16 September 2017 Accepted: 30 December 2017 Published: 30 January 2018
Abstract
In this work we report the synthesis of α,ω-telechelic poly(dimethylsiloxane)s (α,ω-PDMS) by employing a novel bifunctional initiator obtained from a commercially available siloxane precursor, diglycidylether-terminated poly(dimethylsiloxane) (PDMS-DGE). The synthetic strategy was easily followed by different colour changes, and involved the high-vacuum reaction of sec-Bu−Li+ with 1,1′-diphenylethylene (DPE) to afford the addition adduct (bright red) that was subsequently reacted with PDMS-DGE, promoting the nuclephilic ring-opening from epoxide-end chains. The resulting bifunctional initiator (light green) was then employed to polymerize hexamethyl(cyclotrisiloxane) monomer (D3) by using conventional anionic polymerization (from light green to pale yellow). From suitable terminating agents, silane (–SiH), vinyl (–CH=CH2), hydroxy (–OH), and even methacryloyl α,ω-PDMS were obtained. 1H NMR and FT-IR analyses confirmed the presence of the targeted functional groups in the resulting polymers. However, a careful siliconization procedure should be performed over glass surfaces during the fractionation of chlorosilane ampoules in order to avoid the presence of silanol moieties that decrease end-capping efficiency. This fact was observed not only from NMR but also from size exclusion chromatography (SEC) analyses, since narrow molar masses distributions (1.15 ≤ Mw/Mn ≤ 1.3) and a good control over the resulting molar masses were observed.
References
[1] R. P. Quirk, T. Yoo, Y. Lee, J. Kim, B. Lee, Adv. Polym. Sci. 2000, 153, 67.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1yju7o%3D&md5=a52cdffddd5f16a208023c34137e36dbCAS |
[2] N. Hadjichristidis, H. Iatrou, S. Pispas, M. Pitsikalis, J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 3211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsVWmsr8%3D&md5=08c6729947de2a8569f81f48459089ceCAS |
[3] S. Houli, H. Iatrou, N. Hadjichristidis, D. Vlassopoulos, Macromolecules 2002, 35, 6592.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFGit7g%3D&md5=915503af660ce92ff04ada5cbfb1f5ebCAS |
[4] F. S. Bates, M. A. Hillmyer, T. P. Lodge, C. M. Bates, K. T. Delaney, G. H. Fredrickson, Science 2012, 336, 434.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFGqtrY%3D&md5=2cddcf947db81a26d755ab6e61b1060aCAS |
[5] H. Lentzakis, D. Vlassopoulos, D. J. Read, H. Lee, T. Chang, P. Driva, N. Hadjichristidis, J. Rheol. 2013, 57, 605.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1Gqtrw%3D&md5=b1e6bc6ef6e29a85b8ab4c08a4cc4be3CAS |
[6] F. Campise, L. E. Roth, R. H. Acosta, M. A. Villar, E. M. Vallés, G. A. Monti, D. A. Vega, Macromolecules 2016, 49, 387.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xit1Smuw%3D%3D&md5=4dca611ddc055d97474a7dee343f52c9CAS |
[7] R. P. Quirk, S. H. Jang, H. Yang, Y. Lee, Macromol. Symp. 1998, 132, 281.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXms1Kitb0%3D&md5=d98e4384ee499808533b5b8a11ee9565CAS |
[8] M. Szwarc, A. Rembaum, J. Polym. Sci., Polym. Phys. Ed. 1956, 22, 189.
| 1:CAS:528:DyaG2sXhsFWjtg%3D%3D&md5=2c27113555dc0f9d6d21160e553e5c51CAS |
[9] M. Szwarc, M. Leavy, R. Milkovich, J. Am. Chem. Soc. 1956, 78, 2656.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28Xmtlajuw%3D%3D&md5=0b86fcaf2a591e4f9bfa4e096a400b70CAS |
[10] M. Szwarc, Nature 1956, 178, 1168.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXmsFWqsA%3D%3D&md5=7cc564b3b4c3aca70ad0e58566e77cb8CAS |
[11] T. T. Tidwell, Angew. Chem. 2001, 113, 343.
| Crossref | GoogleScholarGoogle Scholar |
[12] G. G. Cameron, G. M. Buchan, Polymer 1979, 20, 1129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXns12qsg%3D%3D&md5=daa129d6065e471d56120dcebbbc1bf3CAS |
[13] F. Bandermann, H.-D. Speikamp, L. Weigel, Makromol. Chem. 1985, 186, 2017.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtFGrtbw%3D&md5=230438b264bb6fb03f3104ed12b71fa9CAS |
[14] N. Hadjichristidis, S. Pispas, G. Floudas, Block Copolymers: Synthetic Strategies, Physical Properties, and Applications 2003 (John Wiley & Sons, Inc.: Hoboken, NJ).
[15] K. Matyjaszewski, A. H. E. Müller, Controlled and Living Polymerizations: From Mechanisms to Applications 2009 (Wiley-VCH: Weinheim).
[16] L. H. Tung, G. Y.-S. Lo, D. E. Beyer, Macromolecules 1978, 11, 616.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXks1SjurY%3D&md5=ff445b697c8673b63a1301fc807fc054CAS |
[17] R. Matmour, A. Lebreton, C. Tsitsilianis, I. Kallitsis, V. Héroguez, Y. Gnanou, Angew. Chem. Int. Ed. 2005, 44, 284.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFWhsg%3D%3D&md5=8888d235164221e20618126dda927f99CAS |
[18] H. Ma, L. Han, Y. Li, Macromol. Chem. Phys. 2017, 218, 1.
[19] D. Uhrig, J. W. Mays, J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 6179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSntbvM&md5=0590f63773856ccfa52516d172b9d924CAS |
[20] M. Morton, L. J. Fetters, Rubber Chem. Technol. 1975, 48, 359.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXlsl2lsb8%3D&md5=000d2bbc3108a46a0f407adf50948c01CAS |
[21] M. D. Ninago, Á. J. Satti, J. A. Ressia, A. E. Ciolino, M. A. Villar, E. M. Vallés, J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 4774.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvFCktrw%3D&md5=8a71fb1b92c941680906ef2d81c3e089CAS |
[22] J. Kurata, Y. Tsunashima, Polymer Handbook 1999 (Wiley: New York, NY).
[23] W.-B. Zhang, B. Sun, H. Li, X. Ren, J. Janoski, S. Sahoo, D. E. Dabney, C. Wesdemiotis, R. P. Quirk, S. Z. D. Cheng, Macromolecules 2009, 42, 7258.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2mtb%2FL&md5=300411c96c2444484805941e1d09ce10CAS |
[24] E. Doris, L. Dechoux, C. Mioskowski, Tetrahedron Lett. 1994, 35, 7943.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhvVansL8%3D&md5=a798a9fda429f4a47f5b91cec2d1d19cCAS |
[25] A. G. Evans, D. B. George, J. Am. Chem. Soc. 1961, 4653.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xkt1GgsQ%3D%3D&md5=5bf6f6972382de4a85438826953907c5CAS |
[26] C. L. Frye, R. M. Salinger, F. W. G. Fearon, J. M. Klosowski, T. DeYoung, J. Org. Chem. 1970, 35, 1308.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXktFCqs7o%3D&md5=a32e154c8abe6d24b820c6f11911b678CAS |
[27] T. Zundel, P. Teyssie, R. Jerome, Macromolecules 1998, 31, 2433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisVSju7k%3D&md5=41cead1ce69e753c96d5647183d2279aCAS |
[28] V. Bellas, H. Iatrou, N. Hadjichristidis, Macromolecules 2000, 33, 6993.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslWktbw%3D&md5=268a1c9e22d9b49946c694776d45f512CAS |
[29] A. E. Ciolino, M. A. Villar, E. M. Vallés, N. Hadjichristidis, J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 2726.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOqt7fF&md5=680caea93a3e3b664f4f7f345e96d48aCAS |
[30] D. W. Van Krevelen, Properties of Polymers 1997 (Elsevier Science B.V.: Amsterdam).
[31] B. Seed, Curr. Protoc. Protein Sci. 2001, 13, A.3E.1.
| Crossref | GoogleScholarGoogle Scholar |
[32] C. P. Tripp, M. L. Hair, Langmuir 1992, 8, 1961.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XkvFyitrg%3D&md5=1558dc1051c93bacc88122fb40f1996bCAS |
[33] C. P. Tripp, M. L. Hair, J. Phys. Chem. 1993, 97, 5693.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWlsbg%3D&md5=d6eeadc3a4c300766af407c6db16e51eCAS |
[34] B. Reuter, C. Petersen, TechnoPharm 2012, 244, 238.
[35] C. P. Tripp, M. L. Hair, Langmuir 1992, 8, 1120.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvVWqs78%3D&md5=79619a807234c6c6216cdabe021c252bCAS |
[36] A. Y. N. Sofla, C. Martin, J. Micromech. Microeng. 2010, 20, 125024.
| Crossref | GoogleScholarGoogle Scholar |
[37] P. Kaali, D. Momcilovic, A. Markström, R. Aune, G. Czel, S. Karlsson, J. Appl. Polym. Sci. 2010, 115, 802.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1yms7nJ&md5=e3ad14044415c87263a40ed18f005eeeCAS |
[38] M. K. Chaudhury, T. Weaver, C. Y. Hui, E. J. Kramer, J. Appl. Phys. 1996, 80, 30.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjvFehsL0%3D&md5=10da23982f7c2f4f894aef5dafcadb48CAS |
[39] G. Ducom, B. Laubie, A. Ohannessian, C. Chottier, P. Germain, V. Chatain, Water Sci. Technol. 2013, 68, 813.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVSmsrfI&md5=90cce4435c0b40efb5516fa4552e1ed4CAS |
[40] S. Perutz, E. J. Kramer, J. Baney, C.-Y. Hui, Macromolecules 1997, 30, 7964.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsVSlsLk%3D&md5=50399cb6bac0a265517fadc79e618c16CAS |
[41] A. Labbé, A. L. Brocas, E. Ibarboure, T. Ishizone, A. Hirao, A. Deffieux, S. Carlotti, Macromolecules 2011, 44, 6356.
| Crossref | GoogleScholarGoogle Scholar |
[42] M. Benaglia, A. Alberti, L. Giorgini, F. Magnoni, S. Tozzi, Polym. Chem. 2013, 4, 124.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKrtLzP&md5=9b7e4e70e4445dddc6d641aa28621eddCAS |
[43] H. Huang, J. Zhang, D. Wei, F. Hu, A. Zheng, H. Xiao, Polym. Bull. 2008, 60, 477.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlSksLg%3D&md5=c8dc6a59ad0e46c488f886ba1e95f5a2CAS |
[44] L. Leemans, R. Fayt, Ph. Teysseié, H. Uytterhoeven, W. De Winter, J. Polym. Sci. Part A: Polym. Chem. 1990, 28, 2187.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkvFyis7Y%3D&md5=4562835f998dd33e8f63b88916b16be8CAS |
[45] M. Rogosic, H. J. Mencer, Z. Gomzi, Eur. Polym. J. 1996, 32, 1337.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsVyjtLY%3D&md5=51ea781dc767b1f9b4a291d1d4844f9bCAS |
[46] M. D. Ninago, A. J. Satti, A. E. Ciolino, E. M. Vallés, M. A. Villar, D. A. Vega, A. Sanz, A. Nogales, D. R. Rueda, J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 3119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns1ajsbw%3D&md5=7f22a3747693cd6fdecbbbf89a479efaCAS |
[47] A. J. Brandolini, D. D. Hills, NMR Spectra of Polymers and Polymer Additives 2000 (Marcel Dekker, Inc.: New York, NY).