Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Label-Free Electrochemical Aptasensor for the Rapid Detection of Tetracycline Based on Ordered Mesoporous Carbon–Fe3O4

Xuejia Zhan A , Guangzhi Hu B C , Thomas Wagberg C , Dongwei Zhang A and Pei Zhou A D
+ Author Affiliations
- Author Affiliations

A School of Agriculture and Biology and Bor S. Luh Food Safety Research Center, Shanghai Jiaotong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510640, China; and Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai 200240, China.

B Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.

C Department of Physics, Umea University, Umea 90187, Sweden.

D Corresponding author. Email: peizhousjtu@163.com

Australian Journal of Chemistry 71(3) 170-176 https://doi.org/10.1071/CH17503
Submitted: 13 September 2017  Accepted: 31 December 2017   Published: 30 January 2018

Abstract

A novel aptasensor based on a tetracycline (TET) aptamer immobilized by physical adsorption on an ordered mesoporous carbon–Fe3O4 (OMC-Fe3O4)-modified screen-printed electrode surface was successfully fabricated. OMC-Fe3O4 was characterized by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The modification procedure of the aptasensor was characterized by cyclic voltammetry. Interaction between the TET aptamer and target was determined by differential pulse voltammetry. Under optimal conditions, the proposed aptasensor exhibited good electrochemical sensitivity to TET in a concentration range of 5 nM to 10 μM, with a detection limit of 0.8 nM (S/N = 3). This aptasensor exhibited satisfactory specificity, reproducibility, and stability.


References

[1]  Y. Zhang, S. Lu, W. Liu, C. Zhao, R. Xi, J. Agric. Food Chem. 2007, 55, 211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWls7fP&md5=99020ecfd8db6c93840e135b7d8399b2CAS |

[2]  X. D. Zhu, Y. J. Wang, R. J. Sun, D. M. Zhou, Chemosphere 2013, 92, 925.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkslaltb8%3D&md5=49c22939776b5d79993956a5cd187f13CAS |

[3]  I. A. Chatzispyrou, N. M. Held, L. Mouchiroud, J. Auwerx, R. H. Houtkooper, Cancer Res. 2015, 75, 4446.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslGnu7vP&md5=ecdf5f9208f796ec9672990f4034101aCAS |

[4]  G. Hamscher, S. Sczesny, H. Höper, H. Nau, Anal. Chem. 2002, 74, 1509.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsF2lsL4%3D&md5=11a2e88ad0c760cf9efa3b1f47a32ce8CAS |

[5]  L. Ji, W. Chen, L. Duan, D. Zhu, Environ. Sci. Technol. 2009, 43, 2322.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVKrsr0%3D&md5=55ddbd407bb38aa57c68356e4a716dc9CAS |

[6]  (a) H. Sun, X. Shi, J. Mao, D. Zhu, Environ. Toxicol. Chem. 2010, 29, 1934.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12jsLzO&md5=64ddd66ba38c68bb92019d2df37977baCAS |
      (b) L. Ji, Y. Wan, S. Zheng, D. Zhu, Environ. Sci. Technol. 2011, 45, 5580.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  H. H. Wang, D. W. Schaffner, Appl. Environ. Microbiol. 2011, 77, 7093.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  S. B. Levy, B. Marshall, Nat. Med. 2004, 10, S122.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVeht7fF&md5=4f273924daf4eb344ed6f40fb1b864c3CAS |

[9]  S. N. Jiao, J. Liu, Y. F. Zhang, G. X. Zhao, J. P. Wang, Food Agric. Immunol. 2012, 23, 273.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOitrzK&md5=f98d70f686c4748a2e6f5a7e4d0e56daCAS |

[10]  Y. Wen, Y. Wang, Y. Q. Feng, Talanta 2006, 70, 153.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFOmsbo%3D&md5=e9901563f6e8d5394b4e6e9bb47a17ddCAS |

[11]  Z. Zhang, X. Li, S. Ding, H. Jiang, J. Shen, X. Xia, Food Chem. 2016, 204, 252.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjtlCjs7Y%3D&md5=e4163e48902f7167dfcf24f116c19b63CAS |

[12]  L. Okerman, S. Croubels, S. De Baere, J. Van Hoof, P. De Backer, H. De Brabander, Food Addit. Contam. 2001, 18, 385.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjs1aiurk%3D&md5=f3805d602d2ffb51c286e6e0f0f235bcCAS |

[13]  Y. Wang, Y. Sun, H. Dai, P. Ni, S. Jiang, W. Lu, Z. Li, Z. Li, Sens. Actuators B 2016, 236, 621.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVGmu7jM&md5=3399f8a886bd1585b9e1b5f74e2cabc8CAS |

[14]  P. Masawat, J. M. Slater, Sens. Actuators B 2007, 124, 127.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsF2iu74%3D&md5=dae670305ac9977775652ce96bd1db04CAS |

[15]  X. Liu, S. Zheng, Y. Hu, Z. Li, F. Luo, Z. He, Food Anal. Methods 2016, 9, 2972.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  C. Zhu, G. Yang, H. Li, D. Du, Y. Lin, Anal. Chem. 2015, 87, 230.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVensrfL&md5=0b18616da7c9e4b36ce2e62bf7067547CAS |

[17]  (a) B. Unnikrishnan, S. Palanisamy, S. M. Chen, Biosens. Bioelectron. 2013, 39, 70.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVeksL3I&md5=4dba88154c0bc511960ec5f585bae5efCAS |
      (b) W. Song, H. Li, H. Liang, W. Qiang, D. Xu, Anal. Chem. 2014, 86, 2775.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  (a) Z. Taleat, A. Khoshroo, M. Mazloum-Ardakani, Microchim. Acta 2014, 181, 865.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlslSiurg%3D&md5=9fb3dc2625c1ca24e12224cc2bacd1d1CAS |
      (b) G. Zhao, X. Zhan, W. Dou, Anal. Biochem. 2011, 408, 53.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, Y. Lin, Electroanalysis 2010, 22, 1027.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvFWntr4%3D&md5=e9a9cc49a34445bd4355e898aa5118a7CAS |
      (b) J. Wang, M. Musameh, Anal. Chem. 2003, 75, 2075.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  C. You, X. Yan, J. Kong, D. Zhao, B. Liu, Electrochem. Commun. 2008, 10, 1864.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWhsb%2FO&md5=786127ec2cef958ed8929030a537ab18CAS |

[21]  J. C. Ndamanisha, L. Guo, Anal. Chim. Acta 2012, 747, 19.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlertLjL&md5=ab2ad2391ab7a07cf99544e9c3de5944CAS |

[22]  L. Zhu, C. Tian, D. Zhu, R. Yang, Electroanalysis 2008, 20, 1128.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlSqur8%3D&md5=f6d11b41b941f064d642d389fd620c85CAS |

[23]  (a) M. Hartmann, Chem. Mater. 2005, 17, 4577.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmt1Krtrc%3D&md5=cdde63d2b97e5d7206f0527b6e1c9391CAS |
      (b) M. Zhou, J. Ding, L. P. Guo, Q. K. Shang, Anal. Chem. 2007, 79, 5328.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  F. Wu, R. Huang, D. Mu, X. Shen, B. Wu, J. Alloys Compd. 2014, 585, 783.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVWlur7F&md5=57c5eba8439c429cdd22dd9b90a424b6CAS |

[25]  M. Mascini, I. Palchetti, S. Tombelli, Angew. Chem. Int. Ed. Engl. 2012, 51, 1316.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVarsA%3D%3D&md5=1850e5c1325ae6508b4ddaf8b209a724CAS |

[26]  (a) G. Contreras Jiménez, S. Eissa, A. Ng, H. Alhadrami, M. Zourob, M. Siaj, Anal. Chem. 2015, 87, 1075.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) H. Li, X. Bai, N. Wang, X. Chen, J. Li, Z. Zhang, J. Tang, Talanta 2016, 146, 727.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  Y. Du, B. Li, H. Wei, Y. Wang, E. Wang, Anal. Chem. 2008, 80, 5110.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXms1ansr8%3D&md5=a843aeeb427c89f37f56baab9bcac1f6CAS |

[28]  Z. Zhou, Y. Du, S. Dong, Anal. Chem. 2011, 83, 5122.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlGjsrc%3D&md5=ee5f1eb1214a9bda85e13cad876a7a4aCAS |

[29]  Y. Xiang, A. Tong, Y. Lu, J. Am. Chem. Soc. 2009, 131, 15352.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1artb%2FF&md5=0eefed4374efdb6edb18ddc8cf389b40CAS |

[30]  (a) P. Weerathunge, R. Ramanathan, R. Shukla, T. K. Sharma, V. Bansal, Anal. Chem. 2014, 86, 11937.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVSgurnE&md5=4c3309519c6b8084ad8959dc6819414eCAS |
      (b) W. Bai, C. Zhu, J. Liu, M. Yan, S. Yang, A. Chen, Environ. Toxicol. Chem. 2015, 34, 2244.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Tian, Y. Wang, Z. Sheng, T. Li, X. Li, Anal. Biochem. 2016, 513, 87.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Z. Mei, H. Chu, W. Chen, F. Xue, J. Liu, H. Xu, R. Zhang, L. Zheng, Biosens. Bioelectron. 2013, 39, 26.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S. Khezrian, A. Salimi, H. Teymourian, R. Hallaj, Biosens. Bioelectron. 2013, 43, 218.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  S. Inagaki, S. Guan, T. Ohsuna, O. Terasaki, Nature 2002, 416, 304.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisFSmtbg%3D&md5=0b74f35701828d299080214e12c4e472CAS |

[32]  G. Hu, F. Nitze, E. Gracia-Espino, J. Ma, H. R. Barzegar, T. Sharifi, X. Jia, A. Shchukarev, L. Lu, C. Ma, G. Yang, T. Wagberg, Nat. Commun. 2014, 5, 5253.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVWgsb7I&md5=b4537f3fcff10b0e40db5bb939499ab6CAS |

[33]  J. H. Niazi, S. J. Lee, M. B. Gu, Bioorg. Med. Chem. 2008, 16, 7245.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps12jtL4%3D&md5=c3badb1c2a0479bfff1347387241f852CAS |

[34]  G. Hu, F. Nitze, T. Sharifi, H. R. Barzegar, T. Wagberg, J. Mater. Chem. 2012, 22, 8541.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVWru7c%3D&md5=90ada2f1afcf135d77ffa9b98778c5f2CAS |

[35]  T. Yamashita, P. Hayes, Appl. Surf. Sci. 2008, 254, 2441.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVeltbk%3D&md5=7c81c624340ec65cd37a9bfa293a1f26CAS |

[36]  P. C. J. Graat, M. A. J. Somers, Appl. Surf. Sci. 1996, 100–101, 36.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  (a) L. Zhu, L. Luo, Z. Wang, Biosens. Bioelectron. 2012, 35, 507.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1Kmsrk%3D&md5=32f218143e7a17e8ec1521738aaab38aCAS |
      (b) D. P. Tang, R. Yuan, Y. Q. Chai, Electroanalysis 2006, 18, 259.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  (a) L. Zhu, C. Tian, D. Yang, X. Jiang, R. Yang, Electroanalysis 2008, 20, 2518.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFaktL%2FN&md5=239755d2cfe14c104cc1abb857a3360bCAS |
      (b) X. Yang, B. Feng, P. Yang, Y. Ding, Y. Chen, J. Fei, Food Chem. 2014, 145, 619.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Zhou, L. P. Guo, Y. Hou, X. J. Peng, Electrochim. Acta 2008, 53, 4176.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  D. Chen, D. Yao, C. Xie, D. Liu, Food Control 2014, 42, 109.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  J. Zhang, B. Zhang, Y. Wu, S. Jia, T. Fan, Z. Zhang, C. Zhang, Analyst 2010, 135, 2706.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOrsb%2FK&md5=39c87200b8ec21aaf35cf09a449cec46CAS |