Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Kinetic and Computational Studies of Rhenium Catalysis for Oxygen Atom Transfer Reactions

Abdellatif Ibdah A B , Heba Bani Bakar A and Salwa Alduwikat A
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Jordan University of Science and Technology, Irbid 22110, Jordan.

B Corresponding author. Email: aaibdah@just.edu.jo

Australian Journal of Chemistry 71(3) 149-159 https://doi.org/10.1071/CH17411
Submitted: 20 July 2017  Accepted: 30 November 2017   Published: 19 December 2017

Abstract

The rhenium(v)oxo dimer {MeReO(edt)}2 (edt = 1,2-ethanedithiolate) is an effective catalyst for the oxygen atom transfer (OAT) reaction from pyridine oxide and picoline oxide to triphenylarsine (Ph3As) as oxygen acceptor. Kinetics measurements were carried out by the initial rate method because of the monomerization reaction of the pyridine product with the {MeReO(edt)}2 catalysts. The derived rate is R = k[Re][NO] (where NO is picoline oxide or pyridine oxide) and independent of the Ph3As concentration. The rate constant at room temperature in chloroform is k(PicNO) = 268.1 ± 3.5 L mol−1 s−1 and k(PyNO) = 155.3 ± 2.3 L mol−1 s−1. The analogue rhenium(v)oxo dimer {MeReO(pdt)}2 (pdt = 1,3-propanedithiolate) does not monomerize with pyridine. However, {MeReO(edt)}2 rapidly monomerizes with pyridine. Density functional theory study of the enthalpy of the monomerization reaction shows that the {MeReO(edt)}2 reaction with pyridine is more thermodynamically favoured than {MeReO(pdt)}2 and this is attributed to the higher angle strain on the {MeReO(edt)}2 bridging sulfur. The computational study of the proposed slow step shows that enthalpy of activation (ΔH) of ReV oxidation to ReVII is unchanged by varying the substituent on the pyridine oxide.


References

[1]  R. Hille, J. Hall, P. Basu, Chem. Rev. 2014, 114, 3963.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlCnu74%3D&md5=c76ef9278fdf774f9715aaeda365ff76CAS |

[2]  (a) L. S. Shul’pina, A. R. Kudinov, D. Mandelli, W. A. Carvalho, Y. N. Kozlov, M. M. Vinogradov, N. S. Ikonnikov, G. B. Shul’pin, J. Organomet. Chem. 2015, 793, 217.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXivVShtLc%3D&md5=be4bf4eb9853ec90ad9e6a5bb9ec7af8CAS |
      (b) L. X. Alvarez, A. B. Sorokin, J. Organomet. Chem. 2015, 793, 139.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. Gonzalez-Navarrete, F. R. Sensato, J. Andres, E. Longo, J. Phys. Chem. A 2014, 118, 6092.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  S. P. de Visser, in Comprehensive Inorganic Chemistry II (2nd Edn) (Ed. J. R. Poeppelmeier) 2013, pp. 619–634 (Elsevier: Amsterdam).

[4]  S. Donck, E. Gravel, N. Shah, D. V. Jawale, E. Doris, I. N. N. Namboothiri, RSC Adv. 2015, 5, 50865.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpsV2jtLY%3D&md5=516684d9a092fa760d5e280b9c62431fCAS |

[5]  (a) Y. Hasenaka, T.-a. Okamura, M. Tatsumi, N. Inazumi, K. Onitsuka, Dalton Trans. 2014, 15491.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVWjurnL&md5=f77e434a15767348a39079e5e2a426fbCAS |
      (b) H. So, Y. J. Park, K.-B. Cho, Y.-M. Lee, M. S. Seo, J. Cho, R. Sarangi, W. Nam, J. Am. Chem. Soc. 2014, 136, 12229.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. Yin, Acc. Chem. Res. 2013, 46, 483.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) R. Sarkar, A. Hens, K. K. Rajak, RSC Adv. 2015, 5, 15084.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) B. K. Panda, U. Senapati, B. Mondal, S. Sengupta, Chem. Sci. Trans. 2015, 4, 337.
      (f) G. Lente, J. Jacob, I. A. Guzei, J. H. Espenson, Inorg. React. Mech. 2000, 2, 169.
      (g) K. Ösz, J. H. Espenson, Inorg. Chem. 2003, 42, 8122.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) A. Ibdah, S. Alduwikat, J. Organomet. Chem. 2017, 842, 9.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXnsV2ltLs%3D&md5=da4f44d1afc74e7a3efd7583d25d3199CAS |
      (b) X. Shan, J. H. Espenson, S. Huang, R. Alberto, Inorg. Synth. 2014, 36, 155.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  S. Raju, C. A. M. R. van Slagmaat, J. Li, M. Lutz, J. T. B. H. Jastrzebski, M.-E. Moret, R. J. M. K. Gebbink, Organometallics 2016, 35, 2178.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xpsl2msrw%3D&md5=aeac554dc884ab24e390c0bc86d28270CAS |

[8]  L. Huang, W. Wang, X. Wei, H. Wei, J. Phys. Chem. A 2015, 119, 3789.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlslKhtbs%3D&md5=92f206fb0d5ba658adf9c94450466615CAS |

[9]  (a) J. M. Hoffman, A. G. Oliver, S. N. Brown, J. Am. Chem. Soc. 2017, 139, 4521.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXjs12guro%3D&md5=325285575f87ebecd8496ff92f89aef7CAS |
      (b) T. D. Lohrey, R. G. Bergman, J. Arnold, Inorg. Chem. 2016, 55, 11993.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. C. A. Sousa, A. C. Fernandes, Coord. Chem. Rev. 2015, 284, 67.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Raju, M.-E. Moret, R. J. M. Klein Gebbink, ACS Catal. 2015, 5, 281.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  J. L. Smeltz, C. P. Lilly, P. D. Boyle, E. A. Ison, J. Am. Chem. Soc. 2013, 135, 9433.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXoslWjsr0%3D&md5=1d7003258399b36749bae78ae5aea694CAS |

[11]  (a) A. Ibdah, React. Kinet. Mech. Catal. 2015, 116, 339.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFSksLfE&md5=05db00e6d9886b0be33c74c948e9de09CAS |
      (b) X. Shan, J. H. Espenson, S. Huang, R. Alberto, Inorg. Synth. 2014, 36, 155.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. Du, M. M. Abu-Omar, Curr. Org. Chem. 2008, 12, 1185.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Li, A. Ellern, J. H. Espenson, Inorg. Chem. 2005, 44, 3690.
         | Crossref | GoogleScholarGoogle Scholar |

[12]     (a) J. H. Espenson, Mechanisms of Inorganic Reactions: Making a Difference in the Understanding of Chemical Reactions, in 227th American Chemical Society National Meeting 2004, p. INOR-338.
      (b) J. H. Espenson, Adv. Inorg. Chem. 2003, 54, 157.

[13]  A. Ibdah, R. M. Al-Zoubi, React. Kinet. Mech. Catal. 2016, 118, 365.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xjs1Crurs%3D&md5=5f6337d5be9a8b5cbc46f355798ca601CAS |

[14]  J. H. Espenson, X. Shan, Y. Wang, R. Huang, D. W. Lahti, J. Dixon, G. Lente, A. Ellern, I. A. Guzei, Inorg. Chem. 2002, 41, 2583.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisF2nsrY%3D&md5=1d5435daf2dc471295b397aaa928b5d9CAS |

[15]     (a) See pp. 1167–1189 in: M. S. Gordon, M. W. Schmidt, Advances in Electronic Structure Theory: GAMESS a Decade Later 2005 (Elsevier B.V.: Amsterdam).
      (b) M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 1993, 14, 1347.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  K. P. Gable, J. J. J. Juliette, C. Li, S. P. Nolan, Organometallics 1996, 15, 5250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xms1Cmtbs%3D&md5=70f0b63f5bda351f82dc330eb8cf1b2bCAS |

[17]  R. Peverati, D. G. Truhlar, J. Phys. Chem. Lett. 2012, 3, 117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1SmtbzE&md5=c26fd60e6ae8329f4be1af5901d77a3fCAS |

[18]  D. S. Barnes, P. M. Burkinshaw, C. T. Mortimer, Thermochim. Acta 1988, 131, 107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlslOksbs%3D&md5=c3e5a108310e0e17966c03974bf9bdc1CAS |

[19]  M. D. M. C. Ribeiro da Silva, M. Agostinha, R. Matos, M. C. Vaz, L. M. N. B. F. Santos, G. Pilcher, W. E. Acree, J. R. Powell, J. Chem. Thermodyn. 1998, 30, 869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFSjsrw%3D&md5=0006c535aec4ca0ff9cce1651961dfa0CAS |

[20]  N. Koshino, J. H. Espenson, Inorg. Chem. 2003, 42, 5735.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFCls70%3D&md5=23d001cedbe390cfe2457999ab5f48d6CAS |

[21]  (a) F. Niroomand Hosseini, S. Masoud Nabavizadeh, Polyhedron 2012, 34, 163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit1Sit7k%3D&md5=2946da182d508504dc061bd250789b44CAS |
      (b) G. Lente, I. A. Guzei, J. H. Espenson, Inorg. Chem. 2000, 39, 1311.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Jacob, G. Lente, I. A. Guzei, J. H. Espenson, Inorg. Chem. 1999, 38, 3762.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. H. Espenson, S. M. Nabavizadeh, Eur. J. Inorg. Chem. 2003, 1911.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  (a) D. C. T. Brower, L. Joseph, D. M. P. Mingos, J. Am. Chem. Soc. 1987, 109, 5203.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkslyjsrg%3D&md5=57a997b1c065198b526feca29076b133CAS |
      (b) K. H. Tatsumi, R. Hoffmann, Inorg. Chem. 1980, 19, 2656.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  A. Ibdah, R. M. Al-Zoubi, React. Kinet. Mech. Catal. 2016, 118, 365.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xjs1Crurs%3D&md5=5f6337d5be9a8b5cbc46f355798ca601CAS |