Control of Gold Nanostructure Morphology by Variation of Temperature and Reagent Ratios in the Turkevich Reaction
Vivek Poonthiyil A B , Vladimir B. Golovko A B C and Antony J. Fairbanks A CA Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
B The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand.
C Corresponding authors. Emails: vladimir.golovko@canterbury.ac.nz; antony.fairbanks@canterbury.ac.nz
Australian Journal of Chemistry 68(6) 858-862 https://doi.org/10.1071/CH14446
Submitted: 9 July 2014 Accepted: 18 August 2014 Published: 18 November 2014
Abstract
In this paper, we demonstrate that the Turkevich reaction can be used to obtain not only spherical gold nanoparticles of various sizes, but also nanoparticles of different morphologies. The effect of the molar ratios of citrate to HAuCl4 at various temperatures has been studied. It was found that the reagent ratio plays a significant role in defining the morphology of the gold nanosystems formed at low temperatures. This study shows that by controlling the reagent ratios and the reaction temperature of the Turkevich reaction, nano-structured gold systems with various shapes, including spheres, wires, networks, and systems comprising polygonal nanoparticles only or nanochains only, with the latter two morphologies reported for the first time, can be obtained. The gold nanosystems obtained in this fashion were characterised by transmission electron microscopy and UV–visible absorption spectroscopy.
References
[1] M. Z. Ahmad, V. B. Golovko, R. H. Adnan, F. Abu Bakar, J. Y. Ruzicka, D. P. Anderson, G. G. Andersson, W. Wlodarski, Int. J. Hydrogen Energy 2013, 38, 12865.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlSntb%2FP&md5=2697812273894979e8db6142f13c7bf7CAS |
[2] M. Z. Ahmad, A. Z. Sadek, M. H. Yaacob, D. P. Anderson, G. Matthews, V. B. Golovko, W. Wlodarski, Sens. Actuators, B 2013, 179, 125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCjsb%2FO&md5=a9b38da354a905d23427a2a7a61e66b6CAS |
[3] K. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello, Chem. Rev. 2012, 112, 2739.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1ehtL0%3D&md5=094aabc4b999239002dd791176f97721CAS | 22295941PubMed |
[4] E. Boisselier, D. Astruc, Chem. Soc. Rev. 2009, 38, 1759.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVSms7k%3D&md5=76c169d2025aeac863e6198e2b779c15CAS | 19587967PubMed |
[5] M. Turner, V. B. Golovko, O. P. H. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M. S. Tikhov, B. F. G. Johnson, R. M. Lambert, Nature 2008, 454, 981.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWns7zO&md5=7e8140013c5408c869c33295eba4d96bCAS | 18719586PubMed |
[6] B. G. Donoeva, D. S. Ovoshchnikov, V. B. Golovko, ACS Catal. 2013, 3, 2986.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCgtL%2FN&md5=99f8452334995bc1251beb99fc655558CAS |
[7] D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, C. A. Mirkin, Angew. Chem., Int. Ed. 2010, 49, 3280.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1GlsbY%3D&md5=59f276e524524cceaf10c78b2804d9e6CAS |
[8] S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, Adv. Mater. 2001, 13, 1501.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1Ghtrw%3D&md5=234b3851bbf2d41d4932915da48e72c1CAS |
[9] L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, Proc. Natl. Acad. Sci. USA 2003, 100, 13549.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFOit7k%3D&md5=615806f604369effda2fc9e3527c5fc2CAS | 14597719PubMed |
[10] Y. Yu, S.-S. Chang, C.-L. Lee, C. R. C. Wang, J. Phys. Chem. B 1997, 101, 6661.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltFyntbY%3D&md5=77cbed48118c467cfcf5d0b8c073e588CAS |
[11] B. Nikoobakht, M. A. El-Sayed, Chem. Mater. 2003, 15, 1957.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFGgu7w%3D&md5=93011f2f9559dcc263a6a4481ec88f24CAS |
[12] T. Nann, J. Riegler, Chem. – Eur. J. 2002, 8, 4791.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosVSgsro%3D&md5=61fdf09659a4fe838171dc63646dc6e5CAS | 12561119PubMed |
[13] J. B. Zhang, N. K. Balla, C. Gao, C. J. R. Sheppard, L. Y. L. Yung, S. Rehman, J. Y. Teo, S. R. Kulkarni, Y. H. Fu, S. J. Yin, Aust. J. Chem. 2012, 65, 290.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFCit7g%3D&md5=e79464495d3dbc32010e4f640da51a30CAS |
[14] S. Kumar, T. Nann, Chem. Commun. 2003, 2478.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlWhs7s%3D&md5=a110b0444288a5d75bc3f96f44dfdb58CAS |
[15] Y. Y. Sun, Science 2002, 298, 2176.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVSkt7Y%3D&md5=0d65871bfc4d86ec9b163f8e79599459CAS |
[16] J. Ren, R. D. Tilley, J. Am. Chem. Soc. 2007, 129, 3287.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFKrtL4%3D&md5=0dbfada4bc31d8661dca3b92777f7ab2CAS | 17311381PubMed |
[17] A. P. LaGrow, B. Ingham, S. Cheong, G. V. M. Williams, C. Dotzler, M. F. Toney, D. A. Jefferson, E. C. Corbos, P. T. Bishop, J. Cookson, R. D. Tilley, J. Am. Chem. Soc. 2012, 134, 855.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Oju7%2FF&md5=96d77c649001a853eadb2322e048945cCAS | 22239232PubMed |
[18] J. H. Warner, R. D. Tilley, Adv. Mater. 2005, 17, 2997.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1WlsQ%3D%3D&md5=c98e750256eae89d64bf98af168ff689CAS |
[19] A. V. Simakin, V. V. Voronov, G. A. Shafeev, R. Brayner, F. Bozon-Verduraz, Chem. Phys. Lett. 2001, 348, 182.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVyls7c%3D&md5=dcf00704e0f4727ec8727e43d6968fa3CAS |
[20] J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, C. A. Mirkin, J. Am. Chem. Soc. 2005, 127, 5312.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1ahtbw%3D&md5=fcf8b6de99d39e5852e4b61b7e5bf03dCAS | 15826156PubMed |
[21] H.-C. Chu, C.-H. Kuo, M. H. Huang, Inorg. Chem. 2006, 45, 808.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlWmurjL&md5=1b0fa4eb04c469bd54e9225e1d6beaedCAS | 16411718PubMed |
[22] M. Grzelczak, J. Perez-Juste, P. Mulvaney, L. M. Liz-Marzan, Chem. Soc. Rev. 2008, 37, 1783.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOitb3K&md5=f7090be4b4638afb06f160103d3cdda1CAS | 18762828PubMed |
[23] W.-C. Huang, Y.-C. Chen, J. Nanopart. Res. 2008, 10, 697.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFCqsLY%3D&md5=44676803e634e328fd0f91bb9f6eb17aCAS |
[24] M. H. Rashid, T. K. Mandal, Adv. Funct. Mater. 2008, 18, 2261.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVykt7vL&md5=0f7a04ef53db1864c1a7eff486a85c5fCAS |
[25] D. Seo, J. C. Park, H. Song, J. Am. Chem. Soc. 2006, 128, 14863.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1GjsLzE&md5=f95609eb0aff559e172f28107e49f849CAS | 17105296PubMed |
[26] J. Duan, D. He, W. Wang, Y. Liu, H. Wu, Y. Wang, M. Fu, S. Li, Talanta 2013, 115, 992.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSmu7zK&md5=076896a45a9b2bc0a04f2eac7e717d05CAS | 24054693PubMed |
[27] M. Yang, F. Qu, Y. Li, Y. He, G. Shen, R. Yu, Biosens. Bioelectron. 2007, 23, 414.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFelsrfK&md5=7b0250184250d800d96b5cb8b4174412CAS | 17582754PubMed |
[28] S. Balachandran, K. Selvam, B. Babu, M. Swaminathan, Dalton Trans. 2013, 42, 16365.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslaktbnE&md5=6a386f46b7f12ea5e81b1f0f5d2c449eCAS | 24065155PubMed |
[29] A. K. Sinha, M. Basu, S. Sarkar, M. Pradhan, T. Pal, J. Colloid Interface Sci. 2013, 398, 13.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFChtLo%3D&md5=0598734acca302cd6d71984c4e186a28CAS | 23473571PubMed |
[30] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Nature 2002, 415, 617.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVCjsL4%3D&md5=166570c306d9a147f25767e8bc87e7d4CAS | 11832939PubMed |
[31] Z. Tang, N. A. Kotov, Adv. Mater. 2005, 17, 951.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslagtbo%3D&md5=f2547e92543529402d1c6f23ee0cdeeaCAS |
[32] R. C. Mucic, J. J. Storhoff, C. A. Mirkin, R. L. Letsinger, J. Am. Chem. Soc. 1998, 120, 12674.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsVyjt7g%3D&md5=5ff648cf014022104a11d1a2022376aeCAS |
[33] F. Zhao, J. K. Xun, S. F. Liu, Aust. J. Chem. 2008, 61, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFajsg%3D%3D&md5=8db8de823bf677e2eac37010dd376b0eCAS |
[34] W. Shenton, S. A. Davis, S. Mann, Adv. Mater. 1999, 11, 449.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFejsLg%3D&md5=af5a3a9174fd54d4ebbb0b3f560b3755CAS |
[35] R. Kanjanawarut, X. Su, Anal. Chem. 2009, 81, 6122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVGkur0%3D&md5=b7f1f2b8d0898a38290120f9c2d6fb4dCAS | 20337394PubMed |
[36] W. Zhao, M. A. Brook, Y. Li, ChemBioChem 2008, 9, 2363.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12hsrzM&md5=00c243919968d84f2c0ae01308df2a3fCAS | 18821551PubMed |
[37] A. Gangula, J. Chelli, S. Bukka, V. Poonthiyil, R. Podila, R. Kannan, A. M. Rao, J. Mater. Chem. 2012, 22, 22866.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSqtLzE&md5=2b6fb7600df01e7d91bb2c3ca8a775f6CAS |
[38] S. Meltzer, R. Resch, B. E. Koel, M. E. Thompson, A. Madhukar, A. A. G. Requicha, P. Will, Langmuir 2001, 17, 1713.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtVynt7k%3D&md5=e4c1af5a9579f0251e6af16c900ea612CAS |
[39] J. Turkevich, P. C. Stevenson, J. Hillier, Discuss. Faraday Soc. 1951, 11, 55.
| Crossref | GoogleScholarGoogle Scholar |
[40] G. Frens, Nat. Phys. Sci 1973, 241, 20.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXns1ansg%3D%3D&md5=8028e858f6b67f077de15b5ab257feb7CAS |
[41] S. S. Shankar, S. Bhargava, M. Sastry, J. Nanosci. Nanotechnol. 2005, 5, 1721.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCgtLfI&md5=24b6096cf493a02326b5bdbc920d46d0CAS | 16245535PubMed |
[42] L. Pei, K. Mori, M. Adachi, Langmuir 2004, 20, 7837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVeiu7k%3D&md5=c4bc87bddbee38d0c06abadb09c31c5cCAS | 15323538PubMed |
[43] Z. Liu, Y. Zu, S. Guo, Appl. Surf. Sci. 2009, 255, 5827.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVShu7k%3D&md5=3b379f48e0235ac2a102c553d7087d04CAS |
[44] P. Qiu, C. Mao, J. Nanopart. Res. 2009, 11, 885.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVGkurc%3D&md5=e8c03055e2492a0b4a48c81a80c7e88dCAS |
[45] W. Patungwasa, J. H. Hodak, Mater. Chem. Phys. 2008, 108, 45.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVKrs7fM&md5=38ce11d3921a33b3deb00daacf261529CAS |
[46] S. Biggs, M. K. Chow, C. F. Zukoski, F. Grieser, J. Colloid Interface Sci. 1993, 160, 511.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsl2kt7Y%3D&md5=9f75a8940a7c67a705ea12d9e8730b8dCAS |
[47] C. L. Nehl, J. H. Hafner, J. Mater. Chem. 2008, 18, 2415.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFKksrc%3D&md5=f1d3d8681d30b28d986db897a73bd49cCAS |
[48] C. Dahmen, G. von Plessen, Aust. J. Chem. 2007, 60, 447.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFejtb4%3D&md5=12a2facbcab482ed6dbc39c490b2839bCAS |
[49] W. Haiss, N. T. K. Thanh, J. Aveyard, D. G. Fernig, Anal. Chem. 2007, 79, 4215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFCit7s%3D&md5=3d369cc20d52f8c9af0ca06644e4ed88CAS | 17458937PubMed |
[50] M. Zhou, S. Chen, S. Zhao, J. Phys. Chem. B 2006, 110, 4510.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVOnu78%3D&md5=134f06c2fef74ce97bc0eb2438d56014CAS | 16526674PubMed |
[51] N. Malikova, I. Pastoriza-Santos, M. Schierhorn, N. A. Kotov, L. M. Liz-Marzán, Langmuir 2002, 18, 3694.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVOhtbs%3D&md5=7e99fb95d6782f56c642cda71ca099bbCAS |
[52] H. Huang, X. Yang, Biomacromolecules 2004, 5, 2340.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntF2it7o%3D&md5=d29987f5fc7efa729d5165264a974bd8CAS | 15530050PubMed |
[53] S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, C. R. C. Wang, Langmuir 1999, 15, 701.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnslOhsLk%3D&md5=739165b92840d70182ece89e43501857CAS |
[54] S. Link, M. A. El-Sayed, J. Phys. Chem. B 1999, 103, 8410.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslGntrs%3D&md5=e76942d86fc5af7f56ba85f7f882ad64CAS |
[55] T. Ung, L. M. Liz-Marzán, P. Mulvaney, J. Phys. Chem. B 2001, 105, 3441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisFems7Y%3D&md5=62825b5e7e8f4b4a09f8ccbaf2406b04CAS |
[56] C. J. Kiely, J. Fink, M. Brust, D. Bethell, D. J. Schiffrin, Nature 1998, 396, 444.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvF2rs74%3D&md5=720515794b2d6a1eacc0a30dfb1ff7d2CAS |
[57] T. Yonezawa, S.-Y. Onoue, N. Kimizuka, Chem. Lett. 2002, 31, 1172.
| Crossref | GoogleScholarGoogle Scholar |
[58] J. F. Wall, F. Grieser, F. Zukoski, J. Chem. Soc., Faraday Trans. 1997, 93, 4017.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsFemtb4%3D&md5=044ecf7c683e7a7fecabea7562d72ad7CAS |
[59] S. Biggs, P. Mulvaney, C. F. Zukoski, F. Grieser, J. Am. Chem. Soc. 1994, 116, 9150.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFeqsLk%3D&md5=7f257bd09fafed05637222db8311b0ddCAS |
[60] M. K. Chow, C. F. Zukoski, J. Colloid Interface Sci. 1994, 165, 97.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtlais7o%3D&md5=1925920d10c6c667e094b5726f4f98eeCAS |
[61] J. Xiao, L. Qi, Nanoscale 2011, 3, 1383.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltF2kurs%3D&md5=10caecb17f487d4c2e49c9134e293ccaCAS | 21290042PubMed |
[62] S. Cheong, J. D. Watt, R. D. Tilley, Nanoscale 2010, 2, 2045.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2msr7I&md5=edc97cbbf4b8ffaab3606e31c1126157CAS | 20694209PubMed |
[63] B. Viswanath, P. Kundu, A. Halder, N. Ravishankar, J. Phys. Chem. C 2009, 113, 16866.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWqtbfP&md5=f55a29073bb4454bf9c6bc5b952eb275CAS |
[64] J. Turkevich, P. C. Stevenson, J. Hillier, J. Phys. Chem. 1953, 57, 670.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXhvFU%3D&md5=e1e174af42dd90061d3f8aab9c43ad56CAS |
[65] J. Ren, R. D. Tilley, Small 2007, 3, 1508.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyksrbF&md5=f67b85bb6cd91ee45ee1edebf593dcd3CAS | 17647261PubMed |
[66] S. Kumar, T. Nann, Small 2006, 2, 316.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1aqs7w%3D&md5=e8b45562e0c5036c55f28f3040bd86e7CAS | 17193043PubMed |
[67] J. Pérez-Juste, L. M. Liz-Marzán, S. Carnie, D. Y. C. Chan, P. Mulvaney, Adv. Funct. Mater. 2004, 14, 571.
| Crossref | GoogleScholarGoogle Scholar |
[68] J. Xie, J. Y. Lee, D. I. C. Wang, J. Phys. Chem. C 2007, 111, 10226.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmslGjt74%3D&md5=d4890706890d3ed46a9e8a7e5375dc6cCAS |
[69] A. Rai, A. Singh, A. Ahmad, M. Sastry, Langmuir 2006, 22, 736.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvFKlug%3D%3D&md5=3908b243ab4a5338959cf7e764fb4bf4CAS | 16401125PubMed |
[70] J. Brawer, Handbook of Preperative Inorganic Chemistry Vol. 1 1963 (Academic Press: New York, NY).