Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Nitrogen-Containing Ionic Liquids: Biodegradation Studies and Utility in Base-Mediated Reactions

Leigh Ford A D , Kai E. O. Ylijoki B , M. Teresa Garcia C , Robert D. Singer B and Peter J. Scammells A D
+ Author Affiliations
- Author Affiliations

A Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Vic. 3052, Australia.

B Atlantic Centre for Green Chemistry, Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada.

C Department of Surfactant Technology, IQAC-CSIC, Jordi Girona 18-26, 08034, Spain.

D Corresponding authors. Email: leigh.ford@monash.edu; peter.scammells@monash.edu

Australian Journal of Chemistry 68(6) 849-857 https://doi.org/10.1071/CH14499
Submitted: 8 August 2014  Accepted: 3 October 2014   Published: 8 December 2014

Abstract

Several ionic liquids (ILs) were prepared in order to study the susceptibility of various cores and substituents to biodegradability using the ‘CO2 headspace’ test (ISO 14593). Several of the ILs contained tertiary amine substituents and were tested as solvents and reagents for several base mediated processes including Suzuki–Miyaura, Sonogashira, Knoevenagel, and Morita–Baylis–Hilman reactions. It was found that although these ILs contain basic functionality, they do not promote base mediated reactions. Density functional theory molecular calculations confirmed that the protonation of these ILs is energetically unfavourable.


References

[1]  P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis 2008 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim).

[2]  N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev. 2008, 37, 123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVWhsQ%3D%3D&md5=636c031412905fe88578e8f1e03d777dCAS | 18197338PubMed |

[3]  M. Antonietti, D. Kuang, B. Smarsly, Y. Zhou, Angew. Chem. Int. Ed. Engl. 2004, 43, 4988.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlKrs78%3D&md5=a4449c3a408db7f3f50d418b8941873fCAS | 15372641PubMed |

[4]  M. Galiński, A. Lewandowski, I. Stępniak, Electrochim. Acta 2006, 51, 5567.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  N. Gathergood, P. J. Scammells, Aust. J. Chem. 2002, 55, 557.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslKntLw%3D&md5=699ae9d35e9d0156fd73b7f1c74d567dCAS |

[6]  N. Gathergood, M. T. Garcia, P. J. Scammells, Green Chem. 2004, 6, 166.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslGis7s%3D&md5=3e7fce2660ddd6c412aa0cb977ca1fbeCAS |

[7]  M. T. Garcia, N. Gathergood, P. J. Scammells, Green Chem. 2005, 7, 9.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFaktb3O&md5=97b670d159ff57af04f898c84c63e77fCAS |

[8]  N. Gathergood, P. J. Scammells, M. T. Garcia, Green Chem. 2006, 8, 156.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFynsL0%3D&md5=0ffcb3ab08bf0ccd6f72bbbfbc38bda2CAS |

[9]  E. Liwarska-Bizukojc, D. Gendaszewska, J. Biosci. Bioeng. 2013, 115, 71.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVSqurk%3D&md5=36d9e10d4617f64e9ed5358c7a1ba897CAS | 22925899PubMed |

[10]  Y. Deng, P. Besse-Hoggan, M. Sancelme, A.-M. Delort, P. Husson, M. F. C. Gomes, J. Hazard. Mater. 2011, 198, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFWqs7zN&md5=0a6a51e654b21a126582243d856d151bCAS | 22071261PubMed |

[11]  D. Coleman, N. Gathergood, Chem. Soc. Rev. 2010, 39, 600.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1WltLY%3D&md5=69cc9d352c3ce7f0164cf571f791144cCAS | 20111784PubMed |

[12]  S. J. Khan, J. E. Ongerth, Chemosphere 2004, 54, 355.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1yrur8%3D&md5=bd8795db3ed236c8cd4d18cfe1262c48CAS | 14575748PubMed |

[13]  L. Ford, J. R. Harjani, F. Atefi, M. T. Garcia, R. D. Singer, P. J. Scammells, Green Chem. 2010, 12, 1783.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Gjs73O&md5=e182b5fbf55fe37a53259a08981dac42CAS |

[14]  A. R. Hajipour, F. Rafiee, J. Iran. Chem. Soc. 2009, 6, 647.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Wjtw%3D%3D&md5=04e704b3516b30a24bfa4f78b2d6c0f4CAS |

[15]  C. Chiappe, B. Melai, A. Sanzone, G. Valentini, Pure Appl. Chem. 2009, 81, 2035.
         | 1:CAS:528:DC%2BD1MXhsFSit7bK&md5=052fb54a298e86d5ad3d150d36aa06c5CAS |

[16]     (a) M. J. Earle, S. Forsyth, U. Frohlich, N. Gunaratne, S. Katdare, K. R. Seddon, The Queen’s University of Belfast, Ionic Liquids with a Cation Comprising a Basic Moiety 2006, WO2006072775A3.
      (b) S. A. Forsyth, U. Fröhlich, P. Goodrich, H. Q. N. Gunaratne, C. Hardacre, A. McKeown, K. R. Seddon, New J. Chem. 2010, 34, 723.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  C. Ye, J. C. Xiao, B. Twamley, A. D. LaLonde, M. Grant Norton, J. M. Shreeve, Eur. J. Org. Chem. 2007, 2007, 5095.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  H. R. Shaterian, K. Azizi, J. Mol. Liq. 2013, 183, 8.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosVSjur4%3D&md5=eb5e85c23d5edc89012284424dd81f62CAS |

[19]  H. R. Shaterian, M. Mohammadnia, J. Mol. Liq. 2012, 173, 55.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1WrtrbK&md5=f23e96b3a70e8d0098d8b55e868352f6CAS |

[20]  I. Yavari, E. Kowsari, Mol. Divers. 2009, 13, 519.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Cmtr3E&md5=0af24c92bce4deae2b1f391f5e839f36CAS | 19381850PubMed |

[21]  Y. Zhang, Q. Jiao, B. Zhen, Q. Wu, H. Li, Appl. Catal., A 2013, 453, 327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitlaisLk%3D&md5=3285b8ec8fccd6fe8459f9291f0e56d7CAS |

[22]  M. Fan, J. Yang, P. Jiang, P. Zhang, S. Li, RSC Adv. 2013, 3, 752.
         | 1:CAS:528:DC%2BC38XhvVertbzM&md5=d9d274752e49b28d947f6c4a270a8aefCAS |

[23]  S. Zhou, L. Liu, B. Wang, F. Xu, R. C. Sun, Chin. Chem. Lett. 2012, 23, 379.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksV2htL0%3D&md5=22e3b4d64c1cd3bdfd066c123c28bbacCAS |

[24]  P. Primerano, M. Cordaro, A. Scala, Tetrahedron Lett. 2013, 54, 4061.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsV2lt7Y%3D&md5=5a63f69c94554a295554fd6ca59a05dbCAS |

[25]  X. Wang, C. A. Ohlin, Q. Lu, Z. Fei, J. Hu, P. J. Dyson, Green Chem. 2007, 9, 1191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Ghs7%2FK&md5=382529d4daeb2777f957bf36962bba79CAS |

[26]  C. C. Pretti, M. M. Renzi, S. E. S. Focardi, A. A. Giovani, G. G. Monni, B. B. Melai, S. S. Rajamani, C. C. Chiappe, Ecotoxicol. Environ. Saf. 2011, 74, 748.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVeqtbc%3D&md5=f481cc2294aa55f5f29e7d0ca1b837d8CAS |

[27]  J. Qu, J. J. Truhan, S. Dai, H. Luo, P. J. Blau, Tribol. Lett. 2006, 22, 207.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWgtLjJ&md5=b6918851bb1a480ad4c963c9c4d355bfCAS |

[28]  S. Stolte, S. Steudte, O. Areitioaurtena, F. Pagano, J. Thöming, P. Stepnowski, A. Igartua, Chemosphere 2012, 89, 1135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVOmurk%3D&md5=727fcc31404ddaf422f8aa9abe6108b2CAS | 22749125PubMed |

[29]  A. S. Wells, V. T. Coombe, Org. Process Res. Dev. 2006, 10, 794.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVKntbs%3D&md5=c986b136cd0851f9a2c3862625d6b594CAS |

[30]  For alternate conditions to selectively monoalkylate dimethylpiperazine see: T. Rüther, K. R. Harris, M. D. Horne, M. Kanakubo, T. Rodopoulos, J.-P. Veder, L. A. Woolf, Chem. – Eur. J. 2013, 19, 17733.
         | Crossref | GoogleScholarGoogle Scholar | 24288151PubMed |

[31]  J. R. Harjani, R. D. Singer, M. T. Garcia, P. J. Scammells, Green Chem. 2008, 10, 436.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjvVegs7w%3D&md5=90f3eb758b7f89bffef440a486e4ac43CAS |

[32]  C. Abrusci, J. Palomar, J. L. Pablos, F. Rodriguez, F. Catalina, Green Chem. 2011, 13, 709.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVGitrc%3D&md5=1ff6033a8409eb0c139fdb28e2673a99CAS |

[33]  I. Greiner, E. Hohmann, L. Vida, G. Keglevich, Open Org. Chem. J. 2008, 2, 65.
         | 1:CAS:528:DC%2BD1cXps1WgtLk%3D&md5=906ccd6708dc9eed6084168aa5164ef2CAS |

[34]  B. H. Lipshutz, T. B. Petersen, A. R. Abela, Org. Lett. 2008, 10, 1333.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFSksL4%3D&md5=e1abbc51f86dea023e07c8c0298f1070CAS | 18335944PubMed |

[35]  F. Chanthavong, N. E. Leadbeater, Tetrahedron Lett. 2006, 47, 1909.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVShs78%3D&md5=1f2c0cd6028c7a5a984c192a58764c7eCAS |

[36]  N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett. 1979, 20, 3437.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  K. Sonogashira, J. Organomet. Chem. 2002, 653, 46.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xktlyhurk%3D&md5=c8dd7839f871f71d04696aa0a8acf027CAS |

[38]  C. Paun, J. Barklie, P. Goodrich, H. Gunaratne, A. McKeown, V. I. Pârvulescu, C. Hardacre, J. Mol. Catal. Chem. 2007, 269, 64.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVemt7s%3D&md5=935964b63485c4de4d9585dc6cf1e72cCAS |

[39]  (a) Ł. Albrecht, B. Richter, C. Vila, H. Krawczyk, K. A. Jørgensen, Chem. – Eur. J. 2009, 15, 3093.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktFOkt7Y%3D&md5=c6859c4ba4dec08b2f366f1b1527f8f8CAS | 19177479PubMed |
      (b) R. G. Gore, L. Myles, M. Spulak, I. Beadham, T. M. Garcia, S. J. Connon, N. Gathergood, Green Chem. 2013, 15, 2747.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Myles, R. G. Gore, N. Gathergood, S. J. Connon, Green Chem. 2013, 15, 2740.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) L. Myles, N. Gathergood, S. J. Connon, Chem. Commun. 2013, 49, 5316.
         | Crossref | GoogleScholarGoogle Scholar |
         (e) I. Beadham, M. Gurbisz, N. Gathergood, in Handbook of Green Chemistry (Ed. P. T. Anastas) 2010, Vol. 9 – Designing Safer Chemicals, pp. 137–158 (Wiley‐VCH: Weinheim).
         (f) I. Beadham, M. Gurbisz, N. Gathergood, in Handbook of Green Chemistry (Ed. P. T. Anastas) 2010, Vol. 9 – Designing Safer Chemicals, pp. 159–226 (Wiley‐VCH: Weinheim).

[40]  X. Mi, S. Luo, J.-P. Cheng, J. Org. Chem. 2005, 70, 2338.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovFWjuw%3D%3D&md5=96904d6fdc0370d0ba89ed9a85a019eeCAS | 15760226PubMed |

[41]  R. L. Benoit, D. Lefebvre, M. Fréchette, Can. J. Chem. 1987, 65, 996.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlvVCrsr0%3D&md5=0b8f6ce33f7090ff07d703686736be43CAS |

[42]  P. Paoletti, J. H. Stern, A. Vacca, J. Phys. Chem. 1965, 69, 3759.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXkvFersL0%3D&md5=62138be6a9a49a79b19f34ee6e2b937cCAS |

[43]     (a) Spartan ’10 2011 (Wavefunction, Inc.: Irvine, CA). Available at http://www.wavefun.com
         (b) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 (Revision C.01) 2010 (Gaussian, Inc.: Wallingford, CT).

[44]  E. G. Zoebisch, E. F. Healy, J. Stewart, J. Am. Chem. Soc. 1985, 107, 3902.

[45]  C. Lee, W. Yang, R. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=b184c28582a539788de66bd09b952e08CAS |

[46]  A. D. Becke, J. Chem. Phys. 1993, 98, 1372.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtlagt7o%3D&md5=07b5db1ad16095213051ca7100675a32CAS |

[47]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=bd225cbbb5eb5750cbd4a95028b56b80CAS |

[48]  C. A. Ohlin, P. J. Dyson, G. Laurenczy, Chem. Commun. 2004, 1070.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVOku7Y%3D&md5=df661065473180eca29a296faf0aae8fCAS |

[49]  A. Wykes, S. L. MacNeil, Synlett 2007, 2007, 107.
         | Crossref | GoogleScholarGoogle Scholar |