Gliding performance in the inland sugar glider in low-canopy forest
Ross L. Goldingay A * , Darren G. Quin A and Karen J. Thomas BA
B
Abstract
Knowledge of the gliding performance of gliding mammals provides important insight into how these species have evolved to use their environment but it can also be used to guide tree retention and habitat restoration. We investigated the glide performance of the inland sugar glider (Petaurus notatus) in central Victoria. We measured 40 glides from untagged individuals during nest box monitoring. On average, gliders launched into a glide from a height of 14.7 m above the ground and landed at 6.2 m above the ground. The average horizontal glide distance was 18.1 m (range 8–41 m). The glide ratio (horizontal glide distance/height dropped) and glide angle averaged 2.2 and 26.4°, respectively. These values represent a better average glide performance than any previously measured for an Australian gliding mammal. These data are contrasted with those of other gliding mammals to explore the hypothesis that smaller species may be more capable gliders than larger related species.
Keywords: animal movement, glide ratio, gliding behaviour, gliding mammal, more capable glider hypothesis, Petaurus australis, Petaurus breviceps, Petaurus norfolcensis.
References
Asari, Y., Yanagawa, H., and Oshida, T. (2007). Gliding ability of the Siberian flying squirrel Pteromys volans orii. Mammal Study 32, 151-154.
| Crossref | Google Scholar |
Ball, T., and Goldingay, R. L. (2008). Can wooden poles be used to reconnect habitat for a gliding marsupial? Landscape and Urban Planning 87, 140-146.
| Crossref | Google Scholar |
Bishop, K. L. (2007). Aerodynamic force generation, performance and control of body orientation during gliding in sugar gliders (Petaurus breviceps). Journal of Experimental Biology 210, 2593-2606.
| Crossref | Google Scholar | PubMed |
Byrnes, G., Lim, N. T-L., and Spence, A. J. (2008). Take-off and landing kinetics of a free-ranging gliding mammal, the Malayan colugo (Galeopterus variegatus). Proceedings of the Royal Society of London. Series B. Biological Sciences 275, 1007-1013.
| Crossref | Google Scholar | PubMed |
Cremona, T., Baker, A. M., Cooper, S. J. B., Montague-Drake, R., Stobo-Wilson, A. M., and Carthew, S. M. (2021). Integrative taxonomic investigation of Petaurus breviceps (Marsupialia: Petauridae) reveals three distinct species. Zoological Journal of the Linnean Society 191, 503-527.
| Crossref | Google Scholar |
Dial, R. (2003). Energetic savings and the body size distributions of gliding mammals. Evolutionary Ecology Research 5, 1151-1162.
| Google Scholar |
Emmons, L. H., and Gentry, A. H. (1983). Tropical forest structure and the distribution of gliding and prehensile-tailed vertebrates. American Naturalist 121, 513-524.
| Crossref | Google Scholar |
Goldingay, R. L. (2014). Gliding performance in the yellow-bellied glider in low-canopy forest. Australian Mammalogy 36, 254-258.
| Crossref | Google Scholar |
Goldingay, R. L., and Taylor, B. D. (2009). Gliding performance and its relevance to gap crossing by the squirrel glider (Petaurus norfolcensis). Australian Journal of Zoology 57, 99-104.
| Crossref | Google Scholar |
Goldingay, R. L., and Thomas, K. J. (2021). Tolerance to high temperature by arboreal mammals using nest boxes in southern Australia. Journal of Thermal Biology 98, 102899.
| Crossref | Google Scholar | PubMed |
Goldingay, R. L., and Thomas, K. J. (2023). Temperature variation in nest boxes occupied by arboreal mammals during winter in southern Australia. Australian Mammalogy 45, 24-31.
| Crossref | Google Scholar |
Goldingay, R. L., Taylor, B. D., and Ball, T. (2011). Wooden poles can provide habitat connectivity for a gliding mammal. Australian Mammalogy 33, 36-43.
| Crossref | Google Scholar |
Goldingay, R. L., Thomas, K., and Shanty, D. (2018). Outcomes of decades long installation of nest boxes for arboreal mammals in southern Australia. Ecological Management & Restoration 19, 204-211.
| Crossref | Google Scholar |
Goldingay, R. L., Taylor, B. D., and Parkyn, J. L. (2019). Use of tall wooden poles by four species of gliding mammal provides further proof of concept for habitat restoration. Australian Mammalogy 41, 255-261.
| Crossref | Google Scholar |
Goldingay, R. L., Jackson, S. M., Winter, J. W., Harley, D. K. P., Bilney, R. J., Quin, D. G., Smith, G. C., Taylor, B. D., and Kavanagh, R. P. (2024a). What’s in a name? Selection of common names among new and revised species of Australian mammals, and the case of the sugar glider. Australian Mammalogy 46, AM23017.
| Crossref | Google Scholar |
Goldingay, R. L., Quin, D. G., and Thomas, K. J. (2024b). Habitat preferences of arboreal mammals in box-ironbark forest during maternal and non-maternal periods. Australian Mammalogy 46, AM24010.
| Crossref | Google Scholar |
Jackson, S. M. (2000a). Glide angle in the genus Petaurus and a review of gliding in mammals. Mammal Review 30, 9-30.
| Crossref | Google Scholar |
Jackson, S. M. (2000b). Population dynamics and life history of the mahogany glider, Petaurus gracilis, and the sugar glider, Petaurus breviceps, in north Queensland. Wildlife Research 27, 21-37.
| Crossref | Google Scholar |
Knipler, M., Dowton, M., and Mikac, K. (2022a). Limited genetic structure detected in sugar gliders (Petaurus breviceps) using genome-wide SNPs. Australian Mammalogy 45, 41-52.
| Crossref | Google Scholar |
Knipler, M. L., Dowton, M., Clulow, J., Meyer, N., and Mikac, K. M. (2022b). Genome-wide SNPs detect fine-scale genetic structure in threatened populations of squirrel glider Petaurus norfolcensis. Conservation Genetics 23, 541-558.
| Crossref | Google Scholar |
Koli, V. K., Bhatnagar, C., and Mali, D. (2011). Gliding behaviour of Indian giant flying squirrel Petaurista philippensis Elliot. Current Science 100, 1563-1568.
| Google Scholar |
Lee, R. S. K., Mendes, C. P., Liang, S. S. Q., Byrnes, G., and Lim, N. T. L. (2023). Bridging the gap: Optimising connectivity solutions for an arboreal gliding mammal. Journal of Applied Ecology 60, 778-789.
| Crossref | Google Scholar |
McGuire, J. A. (2003). Allometric prediction of locomotor performance: an example from southeast Asian flying lizards. American Naturalist 161, 337-349.
| Crossref | Google Scholar | PubMed |
McGuire, J. A., and Dudley, R. (2005). The cost of living large: comparative gliding performance in flying lizards (Agamidae: Draco). American Naturalist 166, 93-106.
| Crossref | Google Scholar | PubMed |
Soanes, K., Taylor, A. C., Sunnucks, P., Vesk, P. A., Cesarini, S., and van der Ree, R. (2018). Evaluating the success of wildlife crossing structures using genetic approaches and an experimental design: lessons from a gliding mammal. Journal of Applied Ecology 55, 129-138.
| Crossref | Google Scholar |
Stafford, B. J., Thorington, R. W., and Kawamichi, T. (2002). Gliding behaviour of Japanese flying squirrels (Petaurista leucogenys). Journal of Mammalogy 83, 553-562.
| Crossref | Google Scholar |
Taylor, B. D., and Goldingay, R. L. (2013). Squirrel gliders use road-side glide poles to cross a road gap. Australian Mammalogy 35, 119-122.
| Crossref | Google Scholar |
Taylor, B. D., and Rohweder, D. (2013). Radio-tracking three sugar gliders using forested highway median strips at Bongil Bongil National Park, north-east New South Wales. Ecological Management & Restoration 14, 228-230.
| Crossref | Google Scholar |
Thorington, R. W., and Heaney, L. R. (1981). Body proportions and gliding adaptations of flying squirrels (Petauristinae). Journal of Mammalogy 62, 101-114.
| Crossref | Google Scholar |
van der Ree, R., Cesarini, S., Sunnucks, P., Moore, J. L., and Taylor, A. (2010). Large gaps in canopy reduce road crossing by a gliding mammal. Ecology and Society 15, 35.
| Crossref | Google Scholar |
Vernes, K. (2001). Gliding performance of the northern flying squirrel (Glaucomys sabrinus) in mature mixed forest of eastern Canada. Journal of Mammalogy 82, 1026-1033.
| Crossref | Google Scholar |