Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE (Open Access)

A comparative study of the combustion dynamics and flame properties of dead Mediterranean plants

A. Sahila https://orcid.org/0000-0001-9126-0470 A , H. Boutchiche A , D. X. Viegas B , L. Reis B and N. Zekri https://orcid.org/0000-0001-7325-4114 A *
+ Author Affiliations
- Author Affiliations

A Faculty of Physics, LEPM (Laboratoire d'Etude Physique des Matériaux), Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, BP 1505 El Mnaouer, 31000, Oran, Algeria.

B Department of Mechanical Engineering, ADAI (Associação para o Desenvolvimento da Aerodinâmica Industrial), University of Coimbra, Rua Luís Reis Santos, Pólo II, 3030-788 Coimbra, Portugal.

* Correspondence to: nouredine.zekri@univ-usto.dz

International Journal of Wildland Fire 32(6) 979-988 https://doi.org/10.1071/WF22130
Submitted: 1 July 2022  Accepted: 9 April 2023   Published: 15 May 2023

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of IAWF. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Background: The physical processes governing flame behaviour are key elements for a better understanding of forest fires.

Aims: To study the combustion properties of several dead Mediterranean forest fuels.

Method: Samples of straw, eucalyptus, shrubs and Pinus Pinaster with the same load were placed in circular containers of the same size, and ignited in the absence of wind.

Key results: The combustion parameters (burning rate, flame height, temperature and gas velocity) evolved according to the same trend regardless of the fuel type. A new law is proposed to account for the anomalous relaxation processes occurring in the growth and decay phases of the flame. The dynamic exponent depends on the vegetation type only in the growth phase (highest for Pinus Pinaster and lowest for straw). The relaxation times are shortest for shrubs and largest for straw. The maximum flame height and burning rate are largest for shrubs and lowest for straw. Froude modelling suggests that the scaling behaviour of the flame may depend on the fuel type.

Conclusions: The observed relaxation parameters driving fire dynamics and the combustion characteristics depend on the nature of the fuel.

Implications: Further investigation of the vegetation region’s influence on these properties is necessary.

Keywords: air velocity and temperature profiles, anomalous diffusion, anomalous relaxation, flame height, flaming combustion, forest fires, heat release rate, Mediterranean plants, turbulent diffusion flame.


References

Adapa P, Tabila L, Schoenau G (2009) Compaction characteristics of barley, canola, oat and wheat straw. Biosystems Engineering 104, 335–344.
Compaction characteristics of barley, canola, oat and wheat straw.Crossref | GoogleScholarGoogle Scholar |

Adou JK, Billaud Y, Brou DA, Clerc JP, Consalvi JL, Fuentes A, Kaiss A, Nmira F, Porterie B, Zekri L, Zekri N (2010) Simulating wildfire patterns using a small-world network model. Ecological Modelling 221, 1463–1471.
Simulating wildfire patterns using a small-world network model.Crossref | GoogleScholarGoogle Scholar |

Babrauskas V (1983) Estimating large pool fire burning rates. Fire Technology 19, 251–261.
Estimating large pool fire burning rates.Crossref | GoogleScholarGoogle Scholar |

Bennett KM, Schmainda KM, Bennett (Tong) R, Rowe DB, Lu H, Hyde JS (2003) Characterization of continuously distributed water diffusion rates in the cerebral cortex with a stretched exponential model. Magnetic Resonance in Medicine 50, 727–734.
Characterization of continuously distributed water diffusion rates in the cerebral cortex with a stretched exponential model.Crossref | GoogleScholarGoogle Scholar |

Bouchaud JP (2008) Anomalous relaxation in complex systems: from stretched to compressed exponentials. In ‘Anomalous transport: Foundations and applications’. (Eds HR Klages, G Radons, IM Sokolov) pp. 327–345. (Wiley-VCH: Berlin)
| Crossref |

Bouchaud JP, Georges A (1990) Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Physics Reports 195, 127–293.
Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications.Crossref | GoogleScholarGoogle Scholar |

Boutchiche H, Mosbah O, Sahila A, Raposo J, Reis L, Viegas DX, Zekri N (2022) Influence of compactness upon flammability properties of forest fuels. SSRN
Influence of compactness upon flammability properties of forest fuels.Crossref | GoogleScholarGoogle Scholar |

Bunde A, Havlin S (Eds) (1996) ‘Fractals and Disordered Systems.’ (Springer Verlag Berlin: Heidelberg)
| Crossref |

Chatris JM, Quintela J, Folch J, Planas E, Arnaldos J, Casal J (2001) Experimental study of burning rate in hydrocarbon pool fires. Combustion and Flame 126, 1373–1383.
Experimental study of burning rate in hydrocarbon pool fires.Crossref | GoogleScholarGoogle Scholar |

David C (1975) Thermal degradation of polymers. In ‘Comprehensive Chemical Kinetics’. (Eds CH Bamford, FH Tipper) pp. 1–173. (Elsevier: Amsterdam)
| Crossref |

de Groot SR, Mazur P (Eds) (1984) ‘Non-Equilibrium Thermodynamics.’ (Dover publications: New York)

Dobrovolskis AR, Alvarellos JL, Lissauer JJ (2007) Lifetimes of small bodies in planetocentric (or heliocentric) orbits. Icarus 188, 481–505.
Lifetimes of small bodies in planetocentric (or heliocentric) orbits.Crossref | GoogleScholarGoogle Scholar |

Drysdale D (Ed.) (2011) ‘An Introduction to Fire Dynamics.’ (A John Wiley & Sons, Ltd)

Dupuy JL, Maréchal J, Morvan D (2003) Fires from a cylindrical forest fuel burner: combustion dynamics and flame properties. Combustion and Flame 135, 65–76.
Fires from a cylindrical forest fuel burner: combustion dynamics and flame properties.Crossref | GoogleScholarGoogle Scholar |

Fernandes PM, Rego FC (1998) A new method to estimate fuel surface area-to-volume ratio using water immersion. International Journal of Wildland Fire 8, 59–66.
A new method to estimate fuel surface area-to-volume ratio using water immersion.Crossref | GoogleScholarGoogle Scholar |

Finney MA, McAllister SS (2011) A review of fire interactions and mass fires. Journal of Combustion 2011, 1–14.
A review of fire interactions and mass fires.Crossref | GoogleScholarGoogle Scholar |

Kee RJ, Coltrin ME, Glarborg P (Eds) (2003) ‘Chemically Reacting Flow.’ (John Wiley & Sons: USA)

Klassen ME, Gore JP (1994) Structure and Radiation Properties of Pool Fires. Final Report, in NISTGCR, 94-651. (National Institute of Standards and Technology: Gaithersburg)

Koch DL, Brady JF (1988) Anomalous diffusion in heterogeneous porous media. The Physics of Fluids 31, 965
Anomalous diffusion in heterogeneous porous media.Crossref | GoogleScholarGoogle Scholar |

Kohlrausch R (1854) Theorie des elektrischen Rückstandes in der Leidener Flasche. Annalen der Physik 167, 179–214.
Theorie des elektrischen Rückstandes in der Leidener Flasche.Crossref | GoogleScholarGoogle Scholar | [In German]

Koseki H (1989) Combustion properties of large liquid pool fires. Fire Technology 25, 241–255.
Combustion properties of large liquid pool fires.Crossref | GoogleScholarGoogle Scholar |

Koseki H, Yumoto T (1988) Air entrainment and thermal radiation from heptane pool fires. Fire Technology 24, 33–47.
Air entrainment and thermal radiation from heptane pool fires.Crossref | GoogleScholarGoogle Scholar |

Kremer F, Schonhals A (Eds) (2003) ‘Broadband Dielectric Spectroscopy.’ (Springer-Verlag: Berlin)

Kung HC, Stavrianidis P (1982) Buoyant plumes of large-scale pool fires. Symposium (International) on Combustion 19, 905–912.
Buoyant plumes of large-scale pool fires.Crossref | GoogleScholarGoogle Scholar |

Küntz M, Lavallée P (2001) Experimental evidence and theoretical analysis of anomalous diffusion during water infiltration in porous building materials. Journal of Physics D: Applied Physics 34, 2547
Experimental evidence and theoretical analysis of anomalous diffusion during water infiltration in porous building materials.Crossref | GoogleScholarGoogle Scholar |

Kuwana K (2019) Fluid Mechanics. In ‘Encyclopedia of Wildfires and Wildland–Urban Interface (WUI) Fires’. (Ed. S Manzello) pp. 483–490. (Springer: Cham)
| Crossref |

Lamorlette A, El Houssami M, Thomas JC, Simeoni A, Morvan D (2015) A dimensional analysis of forest fuel layer ignition model: Application to the ignition of pine needle litters. Journal of Fire Sciences 33, 320–335.
A dimensional analysis of forest fuel layer ignition model: Application to the ignition of pine needle litters.Crossref | GoogleScholarGoogle Scholar |

Lei J, Liu N, Zhang L, Chen H, Shu L, Chen P, Deng Z, Zhu J, Satoh K, De Ris JL (2011) Experimental research on combustion dynamics of medium-scale fire whirl. Proceedings of the Combustion Institute 33, 2407–2415.
Experimental research on combustion dynamics of medium-scale fire whirl.Crossref | GoogleScholarGoogle Scholar |

Llievski E, de Nardis J, Medenjak M, Prosen T (2018) Superdiffusion in one-dimensional quantum lattice models. Physics Review Letters 121, 230602

Manzello SL (Ed) (2020) ‘Encyclopedia of Wildfires and Wildland–Urban interface (WUI) Fires.’ (Springer Cham: USA)
| Crossref |

Martin RE, Pendleton DW, Burgess W (1976) Effect of fire whirlwind formation on solid fuel burning rates. Fire Technology 12, 33–40.
Effect of fire whirlwind formation on solid fuel burning rates.Crossref | GoogleScholarGoogle Scholar |

Matthäus F, Jagodič M, Dobnikar J (2009) E. coli superdiffusion and chemotaxis – search strategy, precision, and motility. Biophysical Journal 97, 946–957.
E. coli superdiffusion and chemotaxis – search strategy, precision, and motility.Crossref | GoogleScholarGoogle Scholar |

McCaffrey BJ (1979) Purely Buoyant Diffusion Flames: Some Experimental Results. NBSIR 79-1910, 20234. (Center for Fire Research National Engineering Laboratory National Bureau of Standards: Washington, DC)

Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Physics Reports 339, 1–77.
The random walk’s guide to anomalous diffusion: A fractional dynamics approach.Crossref | GoogleScholarGoogle Scholar |

Morgado R, Oliveira FA, Batrouni GG, Hansen A (2002) Relation between anomalous and normal diffusion in systems with memory. Physics Review Letters 89, 100601
Relation between anomalous and normal diffusion in systems with memory.Crossref | GoogleScholarGoogle Scholar |

Ohlemiller TJ (2002) Smoldering Combustion. In ‘SFPE Handbook of Fire Protection Engineering’, 3rd edn. (Eds Di Nenno PJ, Drysdale D, Beyler CL, Walton WDPE, Custer RLP, Hall JR, Watts JM) pp. 200–210. (National Institute of Standards and Technology: Massachusetts)

Oliveira FA, Ferreira RMS, Lapas LC, Vainstein MH (2019) Anomalous diffusion: a basic mechanism for the evolution of inhomogeneous systems. Frontiers in Physics 7, 18
Anomalous diffusion: a basic mechanism for the evolution of inhomogeneous systems.Crossref | GoogleScholarGoogle Scholar |

Pausas JG, Llovet J, Rodrigo A, Vallejo R (2008) Are wildfires a disaster in the Mediterranean basin? - A review. International Journal of Wildland Fire 17, 713–723.
Are wildfires a disaster in the Mediterranean basin? - A review.Crossref | GoogleScholarGoogle Scholar |

Pinto C, Viegas D, Almeida M, Raposo J (2017) Fire whirls in forest fires: An experimental analysis. Fire Safety Journal 87, 37–48.
Fire whirls in forest fires: An experimental analysis.Crossref | GoogleScholarGoogle Scholar |

Porterie B, Kaiss A, Clerc JP, Zekri L, Zekri N (2008) Universal scaling in wildfire fractal propagation. Applied Physics Letters 93, 204101
Universal scaling in wildfire fractal propagation.Crossref | GoogleScholarGoogle Scholar |

Quintiere JG, Grove BS (1998) A unified analysis for fire plumes. Symposium (International) on Combustion 27, 2757–2766.
A unified analysis for fire plumes.Crossref | GoogleScholarGoogle Scholar |

Rein G (2009) Smouldering combustion phenomena in science and technology. International Review of Chemical Engineering 1, 3–18.

Richardson LF (1926) Atmospheric diffusion shown on a distance-neighbour graph. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 110, 709–737.
Atmospheric diffusion shown on a distance-neighbour graph.Crossref | GoogleScholarGoogle Scholar |

Rivera JdD, Davies GM, Jahn W (2012) Flammability and the heat of combustion of natural fuels: a review. Combustion Science and Technology 184, 224–242.
Flammability and the heat of combustion of natural fuels: a review.Crossref | GoogleScholarGoogle Scholar |

Rosner DE (Ed.) (1986) ‘Transport Processes in Chemically Reacting Flow Systems.’ (Butterworths: Boston)

Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. Research Paper INT-115. (USDA Forest Service Intermountain Forest and Range Experiment Station: Ogden, UT)

Sabi FZ, Terrah SM, Mosbah O, Dilem A, Hamamousse N, Sahila A, Harrouz O, Boutchiche H, Chaib F, Zekri N, Kaiss A, Clerc JP, Giroud F, Viegas DX (2021) Ignition/non-ignition phase transition: A new critical heat flux estimation method. Fire Safety Journal 119, 103257
Ignition/non-ignition phase transition: A new critical heat flux estimation method.Crossref | GoogleScholarGoogle Scholar |

Sahila A, Zekri N, Clerc JP, Kaiss A, Sahraoui S (2021) Fractal analysis of wildfire pattern dynamics using a Small World Network model. Physica A: Statistical Mechanics and its Applications 583, 126300
Fractal analysis of wildfire pattern dynamics using a Small World Network model.Crossref | GoogleScholarGoogle Scholar |

Sahila A, Boutchiche H, Viegas DX, Reis L, Pinto C, Zekri N (2023) Experimental study of the burning characteristics of dead forest fuels. International Journal of Wildland Fire 32, 593–609.
Experimental study of the burning characteristics of dead forest fuels.Crossref | GoogleScholarGoogle Scholar |

Scher H, Montroll EW (1975) Anomalous transit-time dispersion in amorphous solids. Physical Review B 12, 2455
Anomalous transit-time dispersion in amorphous solids.Crossref | GoogleScholarGoogle Scholar |

Séro-Guillaume O, Margerit J (2002) Modelling forest fires. Part I: a complete set of equations derived by extended irreversible thermodynamics. International Journal of Heat Mass Transfer 45, 1705–1722.
Modelling forest fires. Part I: a complete set of equations derived by extended irreversible thermodynamics.Crossref | GoogleScholarGoogle Scholar |

Stanislavski A, Weron K (2010) Fractional calculus tools applied to study the non-exponential relaxation in dielectrics. In ‘Handbook of Fractional Calculus with Applications. Vol. 4: Applications in Physics, Part A’. (Ed. E Tarasov) pp. 53–70. (De Gruyter: Berlin)

Sun L, Zhou X, Mahalingam S, Weise DR (2006) Comparison of burning characteristics of live and dead chaparral fuels. Combustion and Flame 144, 349–359.
Comparison of burning characteristics of live and dead chaparral fuels.Crossref | GoogleScholarGoogle Scholar |

Tarifa CS (1967) ‘Open fires; Transport and combustion of firebrands.’ (Instituto Nacional de Tecnica Aerospacial Esteban Teradas)

Thomas PH (1963) The size of flames from natural fires. Symposium (International) on Combustion 9, 844–859.
The size of flames from natural fires.Crossref | GoogleScholarGoogle Scholar |

Vilén T, Fernandes PM (2011) Forest fires in Mediterranean countries: CO2 emissions and mitigation possibilities through prescribed burning. Environmental Management 48, 558–567.
Forest fires in Mediterranean countries: CO2 emissions and mitigation possibilities through prescribed burning.Crossref | GoogleScholarGoogle Scholar |

Williams FA (1969) Scaling mass fires. In ‘Research Abstracts and Reviews. Vol. 11’. (Eds National Academy of Sciences and National Research Council) pp. 1–23. (The National Academies Press: Washington)
| Crossref |

Williams G, Watts DC (1970) Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Transactions of the Faraday Society 66, 80
Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function.Crossref | GoogleScholarGoogle Scholar |

Zabetakis MG, Burgess DS (1961) Research on the hazards associated with the production and handling of liquid hydrogen. BM-RI-5707. (Bureau of Mines)
| Crossref |

Zukoski EE (1975) Convective Flows Associated with Room Fires. Semi Annual Progress Report. National Science Foundation Grant No. GI 31892 X1. (Institute of Technology: Pasadena, CA)

Zukoski EE (1985) Fluid Dynamic Aspects of Room Fires. Fire Safety Science 1, 1–30.
Fluid Dynamic Aspects of Room Fires.Crossref | GoogleScholarGoogle Scholar |