Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Wildfire incidence in western Kalaallit Nunaat (Greenland) from 1995 to 2020

Ben Gosden A , Harold Lovell https://orcid.org/0000-0002-9435-3178 A * and Mark Hardiman https://orcid.org/0000-0001-7693-4975 A
+ Author Affiliations
- Author Affiliations

A School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, UK.

* Correspondence to: harold.lovell@port.ac.uk

International Journal of Wildland Fire 31(11) 1033-1042 https://doi.org/10.1071/WF22063
Submitted: 3 May 2022  Accepted: 25 September 2022   Published: 11 October 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of IAWF.

Abstract

Background: Recent widely reported large tundra fires in western Greenland have focused attention on the fire regime in a region that is currently under-represented in global fire research.

Aims: We present an analysis of fire incidence from 1995 to 2020.

Methods: A combination of satellite remote sensing and a review of reports in the online version of the national newspaper, Sermitsiaq.AG, were used to identify wildfires.

Key results: Our analysis did not detect fires from 1995 to 2007. From 2008, 21 separate fire events were identified in selected study areas covering ~47% of ice-free western Greenland. All but four of the 21 fires ignited in July or August during periods of warm and dry weather.

Conclusions: We find no evidence of fires in our study areas until 2008, after which fires occur in most years.

Implications: Projected warming and reduced summer precipitation in this region in upcoming decades suggest the landscape will become increasingly prone to tundra fires.

Keywords: wildfire, fire history, tundra, remote sensing, satellite images, normalised burn ratio, western Greenland, Arctic.


References

Abbott BW, Jones JB, Schuur EAG, Chapin III FS, Bowden WB, Bret-Harte MS, et al. (2016) Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environmental Research Letters 11, 034014
Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment.Crossref | GoogleScholarGoogle Scholar |

Abermann J, Hansen B, Lund M, Wacker S, Karami M, Cappelen J (2017) Hotspots and key periods of Greenland climate change during the past six decades. Ambio 46, 3–11.
Hotspots and key periods of Greenland climate change during the past six decades.Crossref | GoogleScholarGoogle Scholar |

Arctic Council (2016) In Arctic Resilience Report. (Eds M Carson, G Peterson). (Stockholm Environment Institute and Stockholm Resilience Centre: Stockholm) Available at: https://oaarchive.arctic-council.org/handle/11374/1838 [accessed 13 April 2022]

Bradley-Cook JI, Virginia RA (2016) Soil carbon storage, respiration potential, and organic matter quality across an age and climate gradient in southwestern Greenland. Polar Biology 39, 1283–1295.
Soil carbon storage, respiration potential, and organic matter quality across an age and climate gradient in southwestern Greenland.Crossref | GoogleScholarGoogle Scholar |

Cappelen J (2009) Danmarks klima 2008 med Tórshavn, Færøerne og Nuuk, Grønland. Danmarks Meteorologiske Institut Teknisk rapport 09-01. Available at https://www.dmi.dk/fileadmin/Rapporter/TR/tr09-01.pdf [accessed 13 April 2022]

Cappelen J (2010) Danmarks klima 2009 med Tórshavn, Færøerne og Nuuk, Grønland. Danmarks Meteorologiske Institut Teknisk rapport 10-01. Available at https://www.dmi.dk/fileadmin/Rapporter/TR/tr10-01.pdf [accessed 13 April 2022]

Cappelen J (2011) Danmarks klima 2010 med Tórshavn, Færøerne og Nuuk, Grønland. Danmarks Meteorologiske Institut Teknisk rapport 11-01. Available at https://www.dmi.dk/fileadmin/Rapporter/TR/tr11-01.pdf [accessed 13 April 2022]

Christiansen HH, Etzelmüller B, Isaksen K, Juliussen H, Farbrot H, Humlum O, et al. (2010) The thermal state of permafrost in the nordic area during the international polar year 2007–2009. Permafrost and Periglacial Processes 21, 156–181.
The thermal state of permafrost in the nordic area during the international polar year 2007–2009.Crossref | GoogleScholarGoogle Scholar |

Daanen RP, Ingeman-Nielsen T, Marchenko SS, Romanovsky VE, Foged N, Stendel M, Christensen JH, Hornbech Svendsen K (2011) Permafrost degradation risk zone assessment using simulation models. The Cryosphere 5, 1043–1056.
Permafrost degradation risk zone assessment using simulation models.Crossref | GoogleScholarGoogle Scholar |

DMI (2022) Vejrarkiv. Available at https://www.dmi.dk/vejrarkiv/ [accessed 13 April 2022]

Escuin S, Navarro R, Fernández P (2007) Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. International Journal of Remote Sensing 29, 1053–1073.
Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images.Crossref | GoogleScholarGoogle Scholar |

Evangeliou N, Kylling A, Eckhardt S, Myroniuk V, Stebel K, Paugam R, et al. (2019) Open fires in Greenland in summer 2017: transport, deposition and radiative effects of BC, OC and BrC emissions. Atmospheric Chemistry and Physics 19, 1393–1411.
Open fires in Greenland in summer 2017: transport, deposition and radiative effects of BC, OC and BrC emissions.Crossref | GoogleScholarGoogle Scholar |

Flannigan M, Cantin AS, De Groot WJ, Wotton M, Newbery A, Gowman LM (2013) Global wildland fire season severity in the 21st century. Forest Ecology and Management 294, 54–61.
Global wildland fire season severity in the 21st century.Crossref | GoogleScholarGoogle Scholar |

French NHF, Jenkins LK, Loboda TV, Flannigan M, Jandt R, Bourgeau-Chavez LL, Whitley M (2015) Fire in arctic tundra of Alaska: past fire activity, future fire potential, and significance for land management and ecology. International Journal of Wildland Fire 24, 1045–1061.
Fire in arctic tundra of Alaska: past fire activity, future fire potential, and significance for land management and ecology.Crossref | GoogleScholarGoogle Scholar |

Gibson CM, Chasmer LE, Thompson DK, Quinton WL, Flannigan MD, Olefeldt D (2018) Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nature communications 9, 3041
Wildfire as a major driver of recent permafrost thaw in boreal peatlands.Crossref | GoogleScholarGoogle Scholar |

Grosse G, Romanovsky V, Jorgenson T, Anthony KW, Brown J, Overduin PP (2011) Vulnerability and Feedbacks of Permafrost to Climate Change. Eos, Transactions, American Geophysical Union 92, 73–80.
Vulnerability and Feedbacks of Permafrost to Climate Change.Crossref | GoogleScholarGoogle Scholar |

Hanna E, Mernild SH, Cappelen J, Steffen K (2012) Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records. Environmental Research Letters 7, 045404
Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records.Crossref | GoogleScholarGoogle Scholar |

Higuera PE, Chipman ML, Barnes JL, Urban MA, Hu FS (2011) Variability of tundra fire regimes in Arctic Alaska: millennial‐scale patterns and ecological implications. Ecological Applications 21, 3211–3226.
Variability of tundra fire regimes in Arctic Alaska: millennial‐scale patterns and ecological implications.Crossref | GoogleScholarGoogle Scholar |

Hu FS, Higuera PE, Walsh JE, Chapman WL, Duffy PA, Brubaker LB, Chipman ML (2010) Tundra burning in Alaska: linkages to climatic change and sea ice retreat. Journal of Geophysical Research: Biogeosciences 115, G04002
Tundra burning in Alaska: linkages to climatic change and sea ice retreat.Crossref | GoogleScholarGoogle Scholar |

Hu FS, Higuera PE, Duffy P, Chipman ML, Rocha AV, Young AM, et al. (2015) Arctic tundra fires: natural variability and responses to climate change. Frontiers in Ecology and the Environment 13, 369–377.
Arctic tundra fires: natural variability and responses to climate change.Crossref | GoogleScholarGoogle Scholar |

IPCC (2019) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. (Eds H-O Pörtner, DC Roberts V Masson-Delmotte, P Zhai, M Tignor, E Poloczanska, K Mintenbeck, A Alegri’a, M Nicolai, A Okem, J Petzold, B Rama, NM. Weyer). Cambridge University Press, Cambridge, UK and New York, NY, USA.
| Crossref |

Jonasson S, Callaghan TV, Shaver GR, Nielsen LA (2000) Arctic terrestrial ecosystems and ecosystem function. In ‘The Arctic, environment, people, policy’. (Eds M Nuttall, TV Callaghan) pp. 275–313) (Harwood Academic Publishers: Newark)

Jones BM, Kolden CA, Jandt R, Abatzoglou JT, Urban F, Arp CD (2009) Fire behavior, weather, and burn severity of the 2007 Anaktuvuk River tundra fire, North Slope, Alaska. Arctic, Antarctic, and Alpine Research 41, 309–316.
Fire behavior, weather, and burn severity of the 2007 Anaktuvuk River tundra fire, North Slope, Alaska.Crossref | GoogleScholarGoogle Scholar |

Jørgensen RH, Hallinger M, Ahlgrimm S, Friemel J, Kollmann J, Meilby H (2015) Growth response to climatic change over 120 years for A lnus viridis and S alix glauca in West Greenland. Journal of Vegetation Science 26, 155–165.
Growth response to climatic change over 120 years for A lnus viridis and S alix glauca in West Greenland.Crossref | GoogleScholarGoogle Scholar |

Key CH, Benson NC (2006) Landscape Assessment (LA) Sampling and Analysis Methods. In ‘FIREMON: Fire effects monitoring and inventory system. General Technical Report RMRS-GTR-164’. (Eds DC Lutes, RE Keane, JF Caratti, CH Key, NC Benson, S Sutherland, LJ Gangi) 1 CD, 164. (US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO)

Masrur A, Petrov AN, DeGroote J (2018) Circumpolar spatio-temporal patterns and contributing climatic factors of wildfire activity in the Arctic tundra from 2001–2015. Environmental Research Letters 13, 014019
Circumpolar spatio-temporal patterns and contributing climatic factors of wildfire activity in the Arctic tundra from 2001–2015.Crossref | GoogleScholarGoogle Scholar |

McCarty JL, Smith TE, Turetsky MR (2020a) Arctic fires re-emerging. Nature Geoscience 13, 658–660.
Arctic fires re-emerging.Crossref | GoogleScholarGoogle Scholar |

McCarty JL, Francis R, Fain J, Haynes K (2020b) Wildfire Risk Models for western Greenland: Geostatistical Considerations. Paper presented at the EGU General Assembly 2020, Online, 4–8 May, EGU2020-12660.
| Crossref |

McGrath M (2017) ‘Unusual’ Greenland wildfires linked to peat. BBC, 9 August. Available at https://www.bbc.co.uk/news/science-environment-40877099 [accessed 12 April 2022]

McGwinn K (2019) Hikers warned as Greenland wildfire burns out of control. Arctic Today, 16 July. Available at https://www.arctictoday.com/hikers-warned-as-greenland-wildfire-burns-out-of-control/ [accessed 12 April 2022]

Mernild SH, Hanna E, McConnell JR, Sigl M, Beckerman AP, Yde JC, et al. (2015) Greenland precipitation trends in a long-term instrumental climate context (1890–2012): Evaluation of coastal and ice core records. International Journal of Climatology 35, 303–320.
Greenland precipitation trends in a long-term instrumental climate context (1890–2012): Evaluation of coastal and ice core records.Crossref | GoogleScholarGoogle Scholar |

Miller JD, Knapp EE, Key CH, Skinner CN, Isbell CJ, Creasy RM, Sherlock JW (2009) Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sensing of Environment 113, 645–656.
Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA.Crossref | GoogleScholarGoogle Scholar |

Miller GH, Alley RB, Brigham-Grette J, Fitzpatrick JJ, Polyak L, Serreze MC, White JWC (2010) Arctic amplification: can the past constrain the future? Quaternary Science Reviews 29, 1779–1790.
Arctic amplification: can the past constrain the future?Crossref | GoogleScholarGoogle Scholar |

Petrenko CL, Bradley-Cook J, Lacroix EM, Friedland AJ, Virginia RA (2016) Comparison of carbon and nitrogen storage in mineral soils of graminoid and shrub tundra sites, western Greenland. Arctic Science 2, 165–182.
Comparison of carbon and nitrogen storage in mineral soils of graminoid and shrub tundra sites, western Greenland.Crossref | GoogleScholarGoogle Scholar |

Ponomarev EI, Kharuk VI, Ranson KJ (2016) Wildfires dynamics in Siberian larch forests. Forests 7, 125
Wildfires dynamics in Siberian larch forests.Crossref | GoogleScholarGoogle Scholar |

Sand M, Berntsen TK, von Salzen K, Flanner MG, Langner J, Victor DG (2016) Response of Arctic temperature to changes in emissions of short-lived climate forcers. Nature Climate Change 6, 286–289.
Response of Arctic temperature to changes in emissions of short-lived climate forcers.Crossref | GoogleScholarGoogle Scholar |

Saros JE, Anderson NJ, Juggins S, McGowan S, Yde JC, Telling J, et al. (2019) Arctic climate shifts drive rapid ecosystem responses across the West Greenland landscape. Environmental Research Letters 14, 074027
Arctic climate shifts drive rapid ecosystem responses across the West Greenland landscape.Crossref | GoogleScholarGoogle Scholar |

Sermitsiaq.AG (2008a) Forbudt at bruge åben ild i Ilulissat, 12 August. [In Danish] Available at https://sermitsiaq.AG/node/65109 [accessed 12 April 2022]

Sermitsiaq.AG (2008b) To naturbrande hærger ved Ilulissat, 12 August. [In Danish] Available at https://sermitsiaq.ag/to-naturbrande-haerger-ved-ilulissat [accessed 12 April 2022]

Sermitsiaq.AG (2009a) Politiet: Sluk ordentligt efter jer, 28 July. [In Danish] Available at https://sermitsiaq.ag/node/69941 [accessed 12 April 2022]

Sermitsiaq.AG (2009b) Stor brandfare i Ilulissat, 10 August. [In Danish] Available at https://sermitsiaq.ag/node/70362 [accessed 12 April 2022]

Sermitsiaq.AG (2010a) Fjeldbrand i Sydgrønland, 29 May. [In Danish] Available at https://sermitsiaq.ag/fjeldbrand-sydgroenland [accessed 12 April 2022]

Sermitsiaq.AG (2010b) Naturbrand i Saattut passer sig selv, 30 May. [In Danish] Available at https://sermitsiaq.ag/naturbrand-saattut-passer [accessed 12 April 2022]

Sermitsiaq.AG (2010c) Stort område brænder i Buksefjorden, 13 July. [In Danish] Available at https://sermitsiaq.AG/stort-omraade-braender-buksefjorden [accessed 12 April 2022]

Sermitsiaq.AG (2010d) Flere naturbrande under opsyn, 13 July. [In Danish] Available at https://sermitsiaq.ag/flere-naturbrande-opsyn [accessed 12 April 2022]

Sermitsiaq.AG (2013) Pas på - det er tørt i nature, 11 June. [In Danish] Available at https://sermitsiaq.AG/pas-toert-i-naturen [accessed 12 April 2022]

Sermitsiaq.AG (2015a) Fjeldbrand i Sydgrønland, 13 August. [In Danish] Available at https://sermitsiaq.AG/fjeldbrand-i-sydgroenland [accessed 12 April 2022]

Sermitsiaq.AG (2015b) Beredskabchef: Område som 20 fodboldbaner er brændt af, 15 August. [In Danish] Available at https://sermitsiaq.AG/beredskabchef-omraade-20-fodboldbaner-braendt [accessed 12 April 2022]

Sermitsiaq.AG (2015c) Se fjeldbrand fra oven, 19 August. [In Danish] Available at https://sermitsiaq.AG/se-fjeldbrand-oven [accessed 12 April 2022]

Sermitsiaq.AG (2016a) Glasflasker mistænkes for omfattende brand, 20 July. [In Danish] Available at https://sermitsiaq.AG/glasflasker-mistaenkes-omfattende-brand [accessed 12 April 2022]

Sermitsiaq.AG (2016b) Stor brand i Ameralik, 22 September. [In Danish] Available at https://sermitsiaq.ag/node/190501 [accessed 12 April 2022]

Sermitsiaq.AG (2017a) Naturbranden i Nassuttoq er under control, 18 August. [In Danish] Available at https://sermitsiaq.AG/naturbranden-i-nassuttoq-kontrol [accessed 12 April 2022]

Sermitsiaq.AG (2017b) Beredskab arbejder i døgndrift for at slukke naturbranden, 14 August. [In Danish] Available at https://sermitsiaq.AG/node/199624 [accessed 12 April 2022]

Sermitsiaq.AG (2017c) Røg fra naturbrand i Sisimiut, 3 August. [In Danish] Available at https://sermitsiaq.AG/node/197860 [accessed 12 April 2022]

Sermitsiaq.AG (2017d) Naturbrand hærger ved Nassuttooq, 1 August. [In Danish] Available at https://sermitsiaq.ag/node/197902 [accessed 12 April 2022]

Sermitsiaq.AG (2017e) Naturbrande får politiet til at udsende advarsel, 4 August. [In Danish] Available at https://sermitsiaq.ag/naturbrande-faar-politiet-udsende-advarsel [accessed 12 April 2022]

Sermitsiaq.AG (2017f) Ny brand hærger i Nordgrønland, 8 August. [In Danish] Available at https://sermitsiaq.ag/ny-brand-haerger-ved-ilulissat [accessed 12 April 2022]

Sermitsiaq.AG (2017g) Naturbranden i Nordgrønland er nu under kontrol, 10 August. [In Danish] Available at https://sermitsiaq.ag/node/199721 [accessed 12 April 2022]

Sermitsiaq.AG (2017h) Ny fjeldbrand slukket efter hurtig indsats, 16 August. [In Danish] Available at https://sermitsiaq.ag/ny-fjeldbrand-slukket-hurtig-indsats [accessed 12 April 2022]

Sermitsiaq.AG (2019a) Brandfolk har fået naturbrand under control, 9 July. [In Danish] Available at https://sermitsiaq.AG/node/214786 [accessed 12 April 2022]

Sermitsiaq.AG (2019b) Naturbrand er blusset op igen, 1 August. [In Danish] Available at https://sermitsiaq.AG/naturbrand-blusset-igen [accessed 12 April 2022]

Sermitsiaq.AG (2019c) Naturbrand tæt på at blive slukket, 17 August. [In Danish] Available at https://sermitsiaq.AG/naturbrand-taet-slukket [accessed 12 April 2022]

Sermitsiaq.AG (2019d) Naturbrand er slukket: Danske brandfolk vender hjem, 19 August. [In Danish] Available at https://sermitsiaq.AG/node/215491 [accessed 12 April 2022]

Sermitsiaq.AG (2019e) Svært at slukke naturbrand, 5 August. [In Danish] Available at https://sermitsiaq.AG/node/215230 [accessed 12 April 2022]

Sermitsiaq.AG (2020) Vidner til naturbrand hjalp med slukning, 31 August. [In Danish] Available at https://sermitsiaq.ag/node/223945 [accessed 12 April 2022]

Serreze MC, Barrett AP, Stroeve JC, Kindig DN, Holland MM (2009) The emergence of surface-based Arctic amplification. The Cryosphere 3, 11–19.
The emergence of surface-based Arctic amplification.Crossref | GoogleScholarGoogle Scholar |

Teufel B, Sushama L (2019) Abrupt changes across the Arctic permafrost region endanger northern development. Nature Climate Change 9, 858–862.
Abrupt changes across the Arctic permafrost region endanger northern development.Crossref | GoogleScholarGoogle Scholar |

Veraverbeke S, Verstraeten WW, Lhermitte S, Goossens R (2010) Evaluating Landsat Thematic Mapper spectral indices for estimating burn severity of the 2007 Peloponnese wildfires in Greece. International Journal of Wildland Fire 19, 558–569.
Evaluating Landsat Thematic Mapper spectral indices for estimating burn severity of the 2007 Peloponnese wildfires in Greece.Crossref | GoogleScholarGoogle Scholar |

Voiland A (2017a) Fire and Ice in Greenland. Available at https://earthobservatory.nasa.gov/images/90709/fire-and-ice-in-greenland [accessed 12 April 2022]

Voiland A (2017b) Roundtable: The Greenland Wildfire. Available at https://earthobservatory.nasa.gov/blogs/earthmatters/2017/08/10/roundtable-the-greenland-wildfire/ [accessed 12 April 2022]

Voiland A (2019) Another Fire in Greenland. Available at https://earthobservatory.nasa.gov/images/145302/another-fire-in-greenland [accessed 12 April 2022]

Walker DA, Raynolds MK, Daniëls FJA, Einarsson E, Elvebakk A, Gould WA, et al. (2005) The circumpolar Arctic vegetation map. Journal of Vegetation Science 16, 267–282.
The circumpolar Arctic vegetation map.Crossref | GoogleScholarGoogle Scholar |

Weidick A, Bøggild CE, Knudsen NT (1992) Glacier inventory and atlas of West Greenland. Rapport Grønlands Geologiske Undersøgelse 158, 1–194.
Glacier inventory and atlas of West Greenland.Crossref | GoogleScholarGoogle Scholar |

Wrona FJ, Johansson M, Culp JM, Jenkins A, Mård J, Myers-Smith IH, et al. (2016) Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime. Journal of Geophysical Research: Biogeosciences 121, 650–674.
Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime.Crossref | GoogleScholarGoogle Scholar |