Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH FRONT

Integrating geospatial information into fire risk assessment

E. Chuvieco A I J , I. Aguado A I , S. Jurdao A I , M. L. Pettinari A , M. Yebra A H , J. Salas A I , S. Hantson A , J. de la Riva B , P. Ibarra B , M. Rodrigues B , M. Echeverría B , D. Azqueta C , M. V. Román C , A. Bastarrika D , S. Martínez E , C. Recondo F , E. Zapico F and F. J. Martínez-Vega G I
+ Author Affiliations
- Author Affiliations

A Departamento de Geografía, Universidad de Alcalá, Colegios 2, E-28801 Alcalá de Henares, Spain.

B Departamento de Geografía y Ordenación del Territorio, Universidad de Zaragoza, C/ Pedro Cerbuna 12, E-50009 Zaragoza, Spain.

C Departamento de Fundamentos de Economía e Historia Económica, Universidad de Alcalá, Plaza de la Victoria, 2, E-28802 Alcalá de Henares, Spain.

D Departamento de Ingeniería Topográfica, Universidad del País Vasco, Nieves Cano, 12 CP, E-01006 Vitoria-Gasteiz, Álava, Spain.

E Departamento de Botánica-IBADER, Universidad de Santiago, Campus Universitario s/n, E-27002 Lugo, Spain.

F Instituto de Recursos Naturales y Ordenación del Territorio (INDUROT), Universidad de Oviedo, Campus de Mieres, Calle Gonzalo Gutiérrez Quirós s/n, E-33600 MIERES, Spain.

G Centro de Ciencias Humanas y Sociales (CCHS), Consejo Superior de Investigaciones Científicas (CSIC), Albasanz 26-28, E-28037 Madrid, Spain.

H CSIRO Land and Water, GPO Box 1666, Canberra, ACT 2601, Australia.

I GEOLAB Unidad Asociada UAH-CSIC, Spain.

J Corresponding author. Email: emilio.chuvieco@uah.es

International Journal of Wildland Fire 23(5) 606-619 https://doi.org/10.1071/WF12052
Submitted: 2 April 2012  Accepted: 28 August 2012   Published: 22 October 2012

Abstract

Fire risk assessment should take into account the most relevant components associated to fire occurrence. To estimate when and where the fire will produce undesired effects, we need to model both (a) fire ignition and propagation potential and (b) fire vulnerability. Following these ideas, a comprehensive fire risk assessment system is proposed in this paper, which makes extensive use of geographic information technologies to offer a spatially explicit evaluation of fire risk conditions. The paper first describes the conceptual model, then the methods to generate the different input variables, the approaches to merge those variables into synthetic risk indices and finally the validation of the outputs. The model has been applied at a national level for the whole Spanish Iberian territory at 1-km2 spatial resolution. Fire danger included human factors, lightning probability, fuel moisture content of both dead and live fuels and propagation potential. Fire vulnerability was assessed by analysing values-at-risk and landscape resilience. Each input variable included a particular accuracy assessment, whereas the synthetic indices were validated using the most recent fire statistics available. Significant relations (P < 0.001) with fire occurrence were found for the main synthetic danger indices, particularly for those associated to fuel moisture content conditions.

Additional keywords: fire propagation, fuel moisture content, geographic information systems, human factors, remote sensing, vulnerability.


References

Aguado I, Chuvieco E, Boren R, Nieto H (2007) Estimation of dead fuel moisture content from meteorological data in Mediterranean areas. Applications in fire danger assessment. International Journal of Wildland Fire 16, 390–397.
Estimation of dead fuel moisture content from meteorological data in Mediterranean areas. Applications in fire danger assessment.Crossref | GoogleScholarGoogle Scholar |

Allgöwer B, Carlson JD, van Wagtendonk JW (2003) Introduction to fire danger rating and remote sensing. Will remote sensing enhance wildland fire danger rating? In ‘Wildland Fire Danger Estimation and Mapping. The Role of Remote Sensing Data’. (Ed. E Chuvieco) pp. 1–19. (World Scientific Publishing: Singapore)

Amatulli G, Rodrigues MJ, Trombetti M, Lovreglio R (2006) Assessing long-term fire risk at local scale by means of decision tree technique. Journal of Geophysical Research – Biosciences 111, G04S05
Assessing long-term fire risk at local scale by means of decision tree technique.Crossref | GoogleScholarGoogle Scholar |

Archibald S, Roy DP, van Wilgen BW, Scholes RJ (2009) What limits fire? An examination of drivers of burnt area in southern Africa. Global Change Biology 15, 613–630.
What limits fire? An examination of drivers of burnt area in southern Africa.Crossref | GoogleScholarGoogle Scholar |

Arriaza M, Cañas-Ortega JF, Cañas-Madueño JA, Ruiz-Aviles P (2004) Assessing the visual quality of rural landscapes. Landscape and Urban Planning 69, 115–125.
Assessing the visual quality of rural landscapes.Crossref | GoogleScholarGoogle Scholar |

Azqueta D (2007) ‘Introducción a la economía ambiental’, 2nd edn. (McGraw-Hill: Madrid)

Bachmann A, Allgöwer B (2001) A consistent wildland fire risk terminology is needed! Fire Management Today 61, 28–33.

Beverly JL, Herd EPK, Conner J (2009) Modeling fire susceptibility in west central Alberta, Canada. Forest Ecology and Management 258, 1465–1478.
Modeling fire susceptibility in west central Alberta, Canada.Crossref | GoogleScholarGoogle Scholar |

Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytologist 165, 525–537.
The global distribution of ecosystems in a world without fire.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M%2Fpt1OktQ%3D%3D&md5=bd3d76d84f18b8e5e453fde42e8e2efcCAS |

Bossard M, Feranec J, Otahel J (2000) ‘CORINE Land Cover Technical Guide – Addendum 2000.’ (European Environmental Agency: Copenhagen)

Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos C, Scott A, Swetnam T, Van der Werf G, Pyne SJ (2009) Fire in the Earth system. Science 324, 481–484.
Fire in the Earth system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVGmtb8%3D&md5=7214e9bb3dc97368daec1fd88e19c707CAS |

Bowman DMJS, Balch J, Artaxo P, Bond WJ, Cochrane MA, D’Antonio CM, DeFries R, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Mack M, Moritz MA, Pyne S, Roos CI, Scott AC, Sodhi NS, Swetnam TW (2011) The human dimension of fire regimes on Earth. Journal of Biogeography 38, 2223–2236.
The human dimension of fire regimes on Earth.Crossref | GoogleScholarGoogle Scholar |

Büttner G, Feranec J, Jaffrain G (2000) ‘Corine Land Cover 2000 Technical Guides.’ (European Environmental Agency: Copenhagen)

Calkin DE, Ager AA, Gilbertson-Day J, Scott J, Finney M, Schrader-Patton C, Quigley T, Strittholt J, Kaiden J (2010) Wildfire risk and hazard: procedures for the first approximation. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-235. (Fort Collins, CO)

Camia A, Leblon B, Cruz M, Carlson JD, Aguado I (2003) Methods used to estimate moisture content of dead wildland fuels. In ‘Wildland Fire Danger Estimation and Mapping. The Role of Remote Sensing Data’. (Ed. E Chuvieco) pp. 91–117. (World Scientific Publishing: Singapore)

Castro FX, Tudela A, Sebastiá MA (2003) Modeling moisture content in shrubs to predict fire risk in Catalonia (Spain). Agricultural and Forest Meteorology 116, 49–59.
Modeling moisture content in shrubs to predict fire risk in Catalonia (Spain).Crossref | GoogleScholarGoogle Scholar |

Ceccato P, Leblon B, Chuvieco E, Flasse S, Carlson JD (2003) Estimation of live fuel moisture content. In ‘Wildland Fire Danger Estimation and Mapping. The Role of Remote Sensing Data’. (Ed. E Chuvieco) pp. 63–90. (World Scientific Publishing: Singapore)

Chuvieco E (2008) Satellite observation of biomass burning: implications in global change research. In ‘Earth Observation and Global Change’. (Ed. E Chuvieco) pp. 109–142. (Springer: New York)

Chuvieco E, Justice C (2010) Relations between human factors and global fire activity. In ‘Advances in Earth Observation of Global Change’. (Eds E Chuvieco, J Li and X Yang) pp. 187–200. (Springer: Dordrecht, the Netherlands)

Chuvieco E, Allgöwer B, Salas FJ (2003) Integration of physical and human factors in fire danger assessment. In ‘Wildland Fire Danger Estimation and Mapping. The Role of Remote Sensing Data’. (Ed. E Chuvieco) pp. 197–218. (World Scientific Publishing: Singapore)

Chuvieco E, Aguado I, Dimitrakopoulos A (2004) Conversion of fuel moisture content values to ignition potential for integrated fire danger assessment. Canadian Journal of Forest Research 34, 2284–2293.
Conversion of fuel moisture content values to ignition potential for integrated fire danger assessment.Crossref | GoogleScholarGoogle Scholar |

Chuvieco E, Aguado I, Yebra M, Nieto H, Salas J, Martín P, Vilar L, Martínez J, Martín S, Ibarra P, de la Riva J, Baeza J, Rodríguez F, Molina JR, Herrera MA, Zamora R (2010) Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling 221, 46–58.
Development of a framework for fire risk assessment using remote sensing and geographic information system technologies.Crossref | GoogleScholarGoogle Scholar |

Congalton RG, Green K (1999) ‘Assessing the Accuracy of Remotely Sensed Data: Principles and Applications.’ (Lewis Publishers: Boca Raton, FL)

Cooke W, Anantharaj V, Wax C, Choi J, Grala K, Jolly M, Dixon GP, Dyer J, Evans DL, Goodrich GB (2007) Integrating climatic and fuels information into national fire risk decision support tools. In ‘The Fire Environment--Innovations, Management, and Policy; Conference Proceedings’, 26–30 March 2007, Destin, FL. (Eds BW Butler, W Cook) USDA Forest Service, Rocky Mountain Research Station, Proceedings RMRS-P-46, pp. 555–569. (Fort Collins, CO)

de Luis M, Brunetti M, Gonzalez-Hidalgo JC, Longares LA, Martin-Vide J (2010) Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005. Global and Planetary Change 74, 27–33.
Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005.Crossref | GoogleScholarGoogle Scholar |

Dissing D, Verbyla DL (2003) Spatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetation. Canadian Journal of Forest Research 33, 770–782.
Spatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetation.Crossref | GoogleScholarGoogle Scholar |

Finney MA (2006) An overview of FlamMap fire modeling capabilities. In ‘Fuels Management – How to Measure Success: Conference Proceedings’, 28–30 March 2006, Portland, OR. (Eds PL Andrews, BW Butler) USDA Forest Service, Rocky Mountain Research Station, Proceedings RMRS-P-41, pp. 213–220. (Fort Collins, CO)

Fotheringham AS, Brunsdon C, Charlton M (2002) ‘Geographically Weighted Regression. The Analysis of Spatially Varying Relationships.’ (Wiley: Chichester, UK)

García M, Chuvieco E, Nieto H, Aguado I (2008) Combining AVHRR and meteorological data for estimating live fuel moisture content in forest fire danger rating. Remote Sensing of Environment 112, 3618–3627.
Combining AVHRR and meteorological data for estimating live fuel moisture content in forest fire danger rating.Crossref | GoogleScholarGoogle Scholar |

Hansen MC, Townshend JRG, Defries RS, Carroll M (2005) Estimation of tree cover using MODIS data at global, continental and regional/local scales. International Journal of Remote Sensing 26, 4359–4380.
Estimation of tree cover using MODIS data at global, continental and regional/local scales.Crossref | GoogleScholarGoogle Scholar |

Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada P, Asner G, François C, Ustin S (2009) PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sensing of Environment 113, S56–S66.
PROSPECT + SAIL models: a review of use for vegetation characterization.Crossref | GoogleScholarGoogle Scholar |

Jurdao S, Yebra M, Chuvieco E, Bastarrika A (2012) Live fuel moisture content and ignition probability in the Iberian Peninsular territory of Spain. Forest Ecology and Management

Kaloudis S, Tocatlidou A, Lorentzos NA, Sideridis AB, Karteris M (2005) Assessing wildfire destruction danger: a decision support system incorporating uncertainty. Ecological Modelling 181, 25–38.
Assessing wildfire destruction danger: a decision support system incorporating uncertainty.Crossref | GoogleScholarGoogle Scholar |

Kirkby MJ, Jones RJA, Irvine B, Gobin A, Govers G, Cerdan O, Van Rompaey AJJ, Le Bissonnais Y, Daroussin J, King D, Montanarella L, Grimm M, Vieillefont V, Puigdefabregas J, Boer M, Kosmas C, Yassoglou N, Tsara M, Mantel S, Van Lynden GJ, Huting JO (2004) Pan-European Soil Erosion Risk Assessment: The PESERA Map, Version 1. European Soil Bureau Research Report Number 16, Explanation of Special Publication 2004 Number 73 (S.P.I.04.73) (Ispra)

Krawchuk MA, Moritz MA, Parisien M-A, Van Dorn J, Hayhoe K (2009) Global pyrogeography: the current and future distribution of wildfire. PLoS ONE 4, e5102
Global pyrogeography: the current and future distribution of wildfire.Crossref | GoogleScholarGoogle Scholar |

Larjavaara M, Pennanen J, Tuomi TJ (2005) Lightning that ignites forest fires in Finland. Agricultural and Forest Meteorology 132, 171–180.
Lightning that ignites forest fires in Finland.Crossref | GoogleScholarGoogle Scholar |

Loboda TV (2009) Modeling fire danger in data-poor regions: a case study from the Russian Far East. International Journal of Wildland Fire 18, 19–35.
Modeling fire danger in data-poor regions: a case study from the Russian Far East.Crossref | GoogleScholarGoogle Scholar |

Loomis J (2004) Do nearby forest fires cause a reduction in residential property values? Journal of Forest Economics 10, 149–157.
Do nearby forest fires cause a reduction in residential property values?Crossref | GoogleScholarGoogle Scholar |

Martínez J, Vega-García C, Chuvieco E (2009) Human-caused wildfire risk rating for prevention planning in Spain. Journal of Environmental Management 90, 1241–1252.
Human-caused wildfire risk rating for prevention planning in Spain.Crossref | GoogleScholarGoogle Scholar |

MMA (1997) ‘Mapa forestal de España1987–1997 (Spanish Forestry Map).’ (Ministry of Environment, Rural and Marine Affairs: Madrid)

Montero G, Ruiz-Peinado R, Muñoz M (2005) ‘Producción de biomasa y fijación de CO2 por los bosques españoles.’ (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria: Madrid)

NWCG (2003) Glossary of wildland fire terminology. (National Wildfire Coordinating Group) Available at http://www.nwcg.gov/pms/pubs/glossary/pms205.pdf [Verified 3 April 2010]

Pacheco CE, Aguado I, Nieto H (2009) Análisis de ocurrencia de incendios forestales causados por rayo en la España peninsular. GeoFocus 9, 232–249.

Padilla M, Vega-García C (2011) On the comparative importance of fire danger rating indices and their integration with spatial and temporal variables for predicting daily human-caused fire occurrences in Spain. International Journal of Wildland Fire 20, 46–58.

Paltridge GW, Barber J (1988) Monitoring grassland dryness and fire potential in Australia with NOAA/AVHRR data. Remote Sensing of Environment 25, 381–394.
Monitoring grassland dryness and fire potential in Australia with NOAA/AVHRR data.Crossref | GoogleScholarGoogle Scholar |

Prasad VK, Badarinath K, Eaturu A (2008) Biophysical and anthropogenic controls of forest fires in the Deccan Plateau, India. Journal of Environmental Management 86, 1–13.
Biophysical and anthropogenic controls of forest fires in the Deccan Plateau, India.Crossref | GoogleScholarGoogle Scholar |

Preisler HK, Westerling AL, Gebert KM, Munoz-Arriola F, Holmes TP (2011) Spatially explicit forecasts of large wildland fire probability and suppression costs for California. International Journal of Wildland Fire 20, 508–517.
Spatially explicit forecasts of large wildland fire probability and suppression costs for California.Crossref | GoogleScholarGoogle Scholar |

Radeloff VC, Hammer RB, Stewart SI, Fried JS, Holcomb SS, McKeefry JF (2005) The wildland–urban interface in the United States. Ecological Applications 15, 799–805.
The wildland–urban interface in the United States.Crossref | GoogleScholarGoogle Scholar |

Renkin RA, Despain DG (1992) Fuel moisture, forest type, and lightning-caused fire in Yellowstone National Park. Canadian Journal of Forest Research 22, 37–45.
Fuel moisture, forest type, and lightning-caused fire in Yellowstone National Park.Crossref | GoogleScholarGoogle Scholar |

Riera P, Mogas J (2004) Evaluation of a risk reduction in forest fires in a Mediterranean region. Forest Policy and Economics 6, 521–528.
Evaluation of a risk reduction in forest fires in a Mediterranean region.Crossref | GoogleScholarGoogle Scholar |

Rivas S, Gandullo JM (1987) ‘Memoria del mapa de series de vegetación de España.’ (ICONA. Ministerio de Agricultura, Pesca y Alimentación: Madrid)

Robichaud PR (2005) Measurement of post-fire hillslope erosion to evaluate and model rehabilitation treatment effectiveness and recovery. International Journal of Wildland Fire 14, 475–485.
Measurement of post-fire hillslope erosion to evaluate and model rehabilitation treatment effectiveness and recovery.Crossref | GoogleScholarGoogle Scholar |

Román MV, Azqueta D, Rodrígues M (2012) Methodological approach to assess the socio-economic vulnerability to wildfires in Spain. Forest Ecology and Management.
Methodological approach to assess the socio-economic vulnerability to wildfires in Spain.Crossref | GoogleScholarGoogle Scholar | [Published online early 4 August 2012]

Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. USDA Forest Service, Intermountain Forest and Range Experiment Station, Research Paper RP-INT-115. (Ogden, UT)

Rothermel RC (1983) How to predict the spread and intensity of forest and range fires. USDA Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report INT-GTR-143. (Ogden, UT)

San Miguel-Ayanz J, Carlson JD, Alexander M, Tolhurst K, Morgan G, Sneeuwjagt R, Dudley M (2003) Current methods to assess fire danger potential. In ‘Wildland Fire Danger Estimation and Mapping. The Role of Remote Sensing Data’. (Ed. E Chuvieco) pp. 21–61. (World Scientific Publishing: Singapore)

Schaaf CB, Gao F, Strahler AH, Lucht W, Li X, Tsang T, Strugnell NC, Zhang X, Jin Y, Muller J-P, Lewis P, Barnsley M, Hobson P, Disney M, Roberts G, Dunderdale M, Doll C, d’Entremont RP, Hug B, Liang S, Privette JL, Roy D (2002) First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sensing of Environment 83, 135–148.
First operational BRDF, albedo nadir reflectance products from MODIS.Crossref | GoogleScholarGoogle Scholar |

Sebastián-López A, San-Miguel-Ayanz J, Burgan RE (2002) Integration of satellite sensor data, fuel type maps and meteorological observation for evaluation of forest fire risk at the pan-European scale. International Journal of Remote Sensing 23, 2713–2719.
Integration of satellite sensor data, fuel type maps and meteorological observation for evaluation of forest fire risk at the pan-European scale.Crossref | GoogleScholarGoogle Scholar |

Stocks BJ, Mason JA, Todd JB, Bosch EM, Wotton BM, Amiro BD, Flannigan MD, Hirsch KG, Logan KA, Martell DL, Skinner WR (2003) Large forest fires in Canada, 1959–1997. Journal of Geophysical Research – Atmospheres 108, 8149
Large forest fires in Canada, 1959–1997.Crossref | GoogleScholarGoogle Scholar |

Stratton RD (2006) Guidance on spatial wildland fire analysis: models, tools, and techniques. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-183. (Fort Collins, CO)

Sullivan AL (2009) Wildland surface fire spread modelling, 1990–2007: 1. Physical and quasi-physical models. International Journal of Wildland Fire 18, 349–368.
Wildland surface fire spread modelling, 1990–2007: 1. Physical and quasi-physical models.Crossref | GoogleScholarGoogle Scholar |

Syphard AD, Radeloff VC, Keeley JE, Hawbaker TJ, Clayton MK, Stewart SI, Hammer RB (2007) Human influence on California fire regimes. Ecological Applications 17, 1388–1402.
Human influence on California fire regimes.Crossref | GoogleScholarGoogle Scholar |

Tarantola A (2005) ‘Inverse Problem Theory and Methods for Model Parameter Estimation.’ (Society for Industrial and Applied Mathematics: Philadelphia, PA)

Thompson MP, Calkin DE (2011) Uncertainty and risk in wildland fire management: a review. Journal of Environmental Management 92, 1895–1909.
Uncertainty and risk in wildland fire management: a review.Crossref | GoogleScholarGoogle Scholar |

Thompson MP, Calkin DE, Finney MA, Ager AA, Gilbertson-Day JW (2011) Integrated national-scale assessment of wildfire risk to human and ecological values. Stochastic Environmental Research and Risk Assessment 25, 761–780.
Integrated national-scale assessment of wildfire risk to human and ecological values.Crossref | GoogleScholarGoogle Scholar |

Thonicke K, Spessa A, Prentice IC, Harrison SP, Dong L, Carmona-Moreno C (2010) The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7, 1991–2011.
The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2ksrvE&md5=0adf04c5186ff07923a8186ffed977b4CAS |

Tutsch M, Haider W, Beardmore B, Lertzman K, Cooper AB, Walker RC (2010) Estimating the consequences of wildfire for wildfire risk assessment, a case study in the southern Gulf Islands, British Columbia, Canada. Canadian Journal of Forest Research 40, 2104–2114.
Estimating the consequences of wildfire for wildfire risk assessment, a case study in the southern Gulf Islands, British Columbia, Canada.Crossref | GoogleScholarGoogle Scholar |

UNISDR (2009) Terminology on disaster risk reduction. (United Nations International Strategy for Disaster Reduction: Geneva, Switzerland) Available at http://www.unisdr.org/files/7817_UNISDRTerminologyEnglish.pdf [Verified 18 September 2012]

van der Werf GR, Randerson JT, Giglio L, Collatz G, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics 10, 11 707–11 735.
Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFemsb0%3D&md5=988660aac5f61f850802bc4b973d126cCAS |

Venn TJ, Calkin DE (2009) Challenges of socio-economically evaluating wildfire management on non-industrial private and public forestland in the western United States. Small-scale Forestry 8, 43–61.
Challenges of socio-economically evaluating wildfire management on non-industrial private and public forestland in the western United States.Crossref | GoogleScholarGoogle Scholar |

Viegas DX, Piñol J, Viegas MT, Ogaya R (2001) Estimating live fine fuels moisture content using meteorologically based indices. International Journal of Wildland Fire 10, 223–240.
Estimating live fine fuels moisture content using meteorologically based indices.Crossref | GoogleScholarGoogle Scholar |

Viney NR (1991) A review of fine fuel moisture modelling. International Journal of Wildland Fire 1, 215–234.
A review of fine fuel moisture modelling.Crossref | GoogleScholarGoogle Scholar |

Yebra M, Chuvieco E (2009) Linking ecological information and radiative transfer models to estimate fuel moisture content in the Mediterranean region of Spain: solving the ill-posed inverse problem. Remote Sensing of Environment 113, 2403–2411.
Linking ecological information and radiative transfer models to estimate fuel moisture content in the Mediterranean region of Spain: solving the ill-posed inverse problem.Crossref | GoogleScholarGoogle Scholar |

Zarco-Tejada PJ, Rueda CA, Ustin SL (2003) Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sensing of Environment 85, 109–124.
Water content estimation in vegetation with MODIS reflectance data and model inversion methods.Crossref | GoogleScholarGoogle Scholar |