Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Landscape structural features control fire size in a Mediterranean forested area of central Spain

Olga Viedma A , D. G. Angeler A and José M. Moreno A B
+ Author Affiliations
- Author Affiliations

A Department of Environmental Sciences, Universidad de Castilla-La Mancha, Avenida Carlos III, s/n, E-45071 Toledo, Spain.

B Corresponding author. Email: josem.moreno@uclm.es

International Journal of Wildland Fire 18(5) 575-583 https://doi.org/10.1071/WF08030
Submitted: 19 February 2008  Accepted: 12 September 2008   Published: 10 August 2009

Abstract

Landscape structure may affect fire propagation and fire size. Propagation may be favoured in landscapes that are homogeneous and hindered at places of greater heterogeneity, and where discontinuities occur. We tested whether there is continuity in landscape structure across the edges of 110 fires in the Sierra de Gredos (central Spain). We used Landsat Multispectral Scanner images to map and assess the land-cover composition and other features of fires. Landscape diversity along the pixel row of the fire edge and of the two adjacent ones (burned and unburned) was compared for all fires. Additionally, changes in landscape properties and fuel hazard perpendicular to the fire edge evaluated the degree of discontinuity from inside the burn towards the outside across the edge. Fire size was related to landscape properties and weather conditions using generalized linear regression models. Diversity increased from inside the burn towards the edge and outside the burn. Discontinuity in land-cover types and fuel hazard increased from the inside towards the outside. Modelling confirmed that fire size was in part related to landscape characteristics of the burned area and of the edges of the fire perimeter. We conclude that landscape structure was important in determining fire size in this area.

Additional keywords: fuel discontinuity, fuel diversity, GLM, global change, land-use/land-cover change, topographic complexity.


Acknowledgements

Funding was provided by the European Commission (contract EV96–0320, project LUCIFER, and contract EVG1-CT-2001–00043, project SPREAD to J. M. Moreno).


References


Addinsoft (2006) XLSTATS Version 2006.2. (Addinsoft SARL: Paris, France)

Agee JK, Bahro B, Finney MA, Omi PN, Sapsis DB, Skinner CN, van Wagtendonk JW , Weatherspoon CP (2000) The use of shaded fuel-breaks in landscape fire management. Forest Ecology and Management  127, 55–66.
Crossref | GoogleScholarGoogle Scholar | Davis FW, Burrows DA (1994) Spatial simulations of fire in Mediterranean-climate landscapes. In ‘The Role of Fire in Mediterranean-Type Ecosystems’. (Eds JM Moreno, WC Oechel) pp. 117–139. (Springer-Verlag: New York)

Duncan BW , Schmalzer PA (2004) Anthropogenic influences on potential fire spread in a pyrogenic ecosystem of Florida, USA. Landscape Ecology  19, 153–165.
Crossref | GoogleScholarGoogle Scholar | ENVI (1999) ‘The Environment for Visualizing Images Software.’ (Research Systems, Inc: Lafayette, CO)

Gracia C, Gil L, Montero G (2005) Impactos sobre el Sector Forestal. In ‘Evaluación Preliminar de los Impactos en España por Efecto del Cambio Climático’. (Ed. JM Moreno) pp. 399–435. (Ministerio de Medio Ambiente: Madrid, Spain)

Guyette RP, Muzika RM , Dey DC (2002) Dynamics of an anthropogenic fire regime. Ecosystems  5, 472–486.
Moreno JM, Vázquez A, Vélez R (1998) Recent history of forest fires in Spain. In ‘Large Forest Fires’. (Ed. JM Moreno) pp. 1–27. (Backhuys Publishers: Leiden, the Netherlands)

Moritz MA, Keeley JE, Johnson EA , Schaffner AA (2004) Testing a basic assumption of shrubland fire management: how important is fuel age? Frontiers in Ecology and the Environment  2, 67–72.
Rivas-Martínez S (1987) Mapa de las Series de Vegetación de España 1 : 400 000. Publicaciones del Ministerio de Agricultura, Pesca y Alimentación. (Instituto Nacional para la Conservación de la Naturaleza: Madrid, Spain)

Romme WH , Knight DH (1981) Fire frequency and subalpine forest succession along a topographic gradient in Wyoming. Ecology  62, 319–326.
Crossref | GoogleScholarGoogle Scholar | Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. USDA Forest Service, Intermountain Research Station, Research Paper INT-115. (Ogden, UT)

Seydack AHW, Bekker SJ , Marshall AH (2007) Shrubland fire regime scenarios in the Swartberg Mountain Range, South Africa: implications for fire management. International Journal of Wildland Fire  16, 81–95.
Crossref | GoogleScholarGoogle Scholar | Sokal RR, Rohlf FJ (1979) ‘Biometría. Principios y Métodos Estadísticos en la Investigación Biológica.’ (H. Blume Ediciones: Madrid)

Stephens SL (1998) Evaluation of the effects of silvicultural and fuels treatments on potential fire behaviour in Sierra Nevada mixed-conifer forests. Forest Ecology and Management  105, 21–35.
Crossref | GoogleScholarGoogle Scholar | Turner MG, Dale VH (1990) Modelling landscape disturbance. In ‘Quantitative Methods in Landscape Ecology. The Analysis and Interpretation of Landscape Heterogeneity’. (Eds MG Turner, RH Gardner) pp. 323–351. (Springer-Verlag: New York)

Van Wagner CE (1987) Development and structure of the Canadian forest fire weather index system. Canadian Forest Service, Forestry Technical Report 35. (Otawa, ON)

Vázquez A , Moreno JM (1993) Sensitivity of fire occurrence to meteorological variables in Mediterranean and Atlantic areas of Spain. Landscape and Urban Planning  24, 129–142.
Crossref | GoogleScholarGoogle Scholar |

Vázquez A , Moreno JM (2001) Spatial distribution of forest fires in Sierra de Gredos (central Spain). Forest Ecology and Management  147, 55–65.
Crossref | GoogleScholarGoogle Scholar |

Viedma O, Moreno JM , Rieiro I (2006) Interactions between land use/land cover change, forest fires and landscape structure in Sierra de Gredos (central Spain). Environmental Conservation  33, 212–222.
Crossref | GoogleScholarGoogle Scholar |