Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

An inverse method to estimate stem surface heat flux in wildland fires

Anthony S. Bova A B and Matthew B. Dickinson A
+ Author Affiliations
- Author Affiliations

A Forest Service, US Department of Agriculture, Northern Research Station, 359 Main Road, Delaware, OH 43015, USA.

B Corresponding author. Email: abova@fs.fed.us

International Journal of Wildland Fire 18(6) 711-721 https://doi.org/10.1071/WF07122
Submitted: 23 August 2007  Accepted: 2 September 2008   Published: 22 September 2009

Abstract

Models of wildland fire-induced stem heating and tissue necrosis require accurate estimates of inward heat flux at the bark surface. Thermocouple probes or heat flux sensors placed at a stem surface do not mimic the thermal response of tree bark to flames. We show that data from thin thermocouple probes inserted just below the bark can be used, by means of a one-dimensional inverse heat conduction method, to estimate net heat flux (inward minus outward heat flow) and temperature at the bark surface. Further, we estimate outward heat flux from emitted water vapor and bark surface re-radiation. Estimates of surface heat flux and temperature made by the inverse method confirm that surface-mounted heat flux sensors and thermocouple probes overestimate surface heat flux and temperature. As a demonstration of the utility of the method, we characterized uneven stem heating, due to leeward, flame-driven vortices, in a prescribed surface fire. Advantages of using an inverse method include lower cost, ease of multipoint measurements and negligible effects on the target stem. Drawbacks of the simple inverse model described herein include inability to estimate heat flux in very moist bark and uncertainty in estimates when extensive charring occurs.

Additional keywords: heat transfer, mass flux, modeling.


Acknowledgements

We thank laboratory technicians Kelley McDonald and Tess Schmaltz for their time, patience and attention to detail.


References


Alifanov OM (1994) ‘Inverse Heat Transfer Problems.’ (Springer-Verlag: New York)

Beck JV, Blackwell B , Haji-Sheikh A (1996) Comparison of some inverse heat conduction methods using experimental data. International Journal of Heat and Mass Transfer  39, 3649–3657.
Crossref | GoogleScholarGoogle Scholar | Carslaw HS, Jaeger JC (2003) ‘Conduction of Heat in Solids.’ 2nd edn. (Oxford University Press: Oxford, MA)

Castellanos JL, Gómez S , Guerra V (2002) The triangle method for finding the corner of the L-curve. Applied Numerical Mathematics  43, 359–373.
Crossref | GoogleScholarGoogle Scholar | Dickinson MB, Johnson EA (2001) Fire effects on trees. In ‘Forest Fires: Behaviour and Ecological Effects’. (Eds E Johnson, K Miyanishi) pp. 477–525. (Academic Press: San Diego, CA)

Dorai GA , Tortorelli DA (1997) Transient inverse heat conduction problem solutions via Newton’s method. International Journal of Heat and Mass Transfer  40, 4115–4127.
Crossref | GoogleScholarGoogle Scholar | CAS | Engl HW, Hanke M, Neubauer A (1996) ‘Regularization of Inverse Problems.’ (Springer-Verlag: New York)

Galgano A , Di Blasi C (2004) Modeling the propagation of drying and decomposition fronts in wood. Combustion and Flame  139, 16–27.
Crossref | GoogleScholarGoogle Scholar | CAS | Groetsch CW (1993) ‘Inverse Problems in the Mathematical Sciences.’ (Friedrich Vieweg and Sohn: Braunschweig, Wiesbaden)

Gutsell SL , Johnson EA (1996) How fire scars are formed: coupling a disturbance process to its ecological effect. Canadian Journal of Forest Research  26, 166–174.
Crossref | GoogleScholarGoogle Scholar | Hansen PC (2001) The L-curve and its use in the numerical treatment of inverse problems. In ‘Computational Inverse Problems in Electrocardiology’. pp. 119–142. (WIT Press: Southampton, UK)

Huang C-H , Yeh C-Y (2002) An inverse problem in simultaneous estimating the Biot numbers of heat and moisture transfer for a porous material. International Journal of Heat and Mass Transfer  45, 4643–4653.
Crossref | GoogleScholarGoogle Scholar | Incropera FP, DeWitt DP (2002) ‘An Introduction to Heat Transfer.’ 4th edn. (Wiley: New York)

Jones JL, Webb BW, Jimenez D, Reardon J , Butler BW (2004) Development of an advanced one-dimensional stem heating model for application in surface fires. Canadian Journal of Forest Research  34, 20–30.
Crossref | GoogleScholarGoogle Scholar | Kurpisz K, Nowak AJ (1995) ‘Inverse Thermal Problems.’ (Computational Mechanics Publications: Southampton, UK)

Lagier GL, Lemonnier H , Coutris N (2004) A numerical solution of the linear multidimensional unsteady inverse heat conduction problem with the boundary element method and the singular value decomposition. International Journal of Thermal Sciences  43, 145–155.
Crossref | GoogleScholarGoogle Scholar | Nakos JT (2005) Uncertainty analysis of steady-state incident heat flux measurements in hydrocarbon fuel fires. Sandia National Laboratories, Technical Report SAND2005–7144. Available at http://prod.sandia.gov/techlib/access-control.cgi/2005/057144.pdf [Verified 11 August 2009]

Radeloff VC, Mladenoff DJ , Boyce MS (1999) Detecting jack pine budworm defoliation using spectral mixture analysis: separating effects from determinants. Remote Sensing of Environment  69, 156–169.
Crossref | GoogleScholarGoogle Scholar | Siau JF (1995) ‘Wood: Influence of Moisture on Physical Properties.’ (Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University: Blacksburg, VA)

Shen DK, Fang MX, Luo ZY , Cen KF (2007) Modeling pyrolysis of wet wood under external heat flux. Fire Safety Journal  42, 210–217.
Crossref | GoogleScholarGoogle Scholar | CAS | Wu L (2003) A parameter choice method for Tikhonov regularization. Electronic Transactions on Numerical Analysis 16, 107–128. Available at http://etna.mcs.kent.edu/vol.16.2003/pp107-128.dir/pp107-128.pdf [Verified 14 September 2009]