Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE (Open Access)

The impacts of fire use in the Brazilian Amazon: a bibliometric analysis

Amanda Kesley Cardozo Cancio A , Mayerly Alexandra Guerrero-Moreno https://orcid.org/0000-0002-6767-2966 B C * , Everton Cruz da Silva D E F , Fernando Abreu Oliveira C , Karina Dias-Silva D G , James Ferreira Moura Jr H I , Thiago Almeida Vieira A B , Lenize Batista Calvão D E , Leandro Juen D E and José Max Barbosa Oliveira-Junior A B C D
+ Author Affiliations
- Author Affiliations

A Programa de Pós-Graducação em Sociedade, Ambiente e Qualidade de Vida (PPGSAQ), Instituto de Formação Interdisciplinar e Intercultural, Universidade Federal do Oeste do Pará (UFOPA), Santarém, Pará, Brazil.

B Programa de Pós-Graducação em Sociedade, Natureza e Desenvolvimento (PPGSND), Instituto de Biodiversidade e Florestas (IBEF), Universidade Federal do Oeste do Pará (UFOPA), Santarém, Pará, Brazil.

C Laboratório de Estudos de Impacto Ambiental (LEIA), Instituto de Ciências e Tecnologia das Águas (ICTA), Universidade Federal do Oeste do Pará (UFOPA), Santarém, Pará, Brazil.

D Programa de Pós-Graduação em Ecologia (PPGECO), Universidade Federal do Pará (UFPA), Belém, Pará, Brazil.

E Laboratório de Ecologia e Conservação (LABECO), Programa de Pós-Graduação em Ecologia (PPGECO), Universidade Federal do Pará (UFPA), Belém, Pará, Brazil.

F Secretaria Municipal da Gestão do Meio Ambiente e Clima (SEMAC), Belterra, Pará, Brazil.

G Laboratório de Ecologia e Conservação (LABECO), Faculdade de Ciências Biológicas (FCB), Universidade Federal do Pará (UFPA), Altamira, Pará, Brazil.

H Instituto de Humanidades (IH), Universidade da Integração Internacional da Lusofonia Afro-Brasileira (UNILAB), Redenção, Ceará, Brazil.

I Graduação em Psicologia, Universidade Federal do Ceará (UFC), Fortaleza, Ceará, Brazil.


International Journal of Wildland Fire 34, WF24182 https://doi.org/10.1071/WF24182
Submitted: 29 October 2024  Accepted: 1 March 2025  Published: 27 March 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of IAWF. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

The use of fire, essential in human evolution, has facilitated low-cost land management in the Amazon, albeit with significant environmental losses. Its uncontrolled use, exacerbated by climate change, intensifies environmental and socioeconomic challenges. This study explores the impacts of fire use in the Brazilian Amazon via bibliometric analysis, revealing trends, gaps and key areas of scientific relevance based on 192 articles indexed in Scopus and Web of Science. Brazil has the highest scientific production (58%) and is a leader in scientific collaboration networks in this area. Topics such as ‘deforestation’ and ‘fire’ were central themes. Approximately 67% of studies focused on wildfires. The geographical distribution indicates that most studies (57%) are conducted on a regional scale, encompassing the entire Legal Amazon, and 15% focus on the state of Pará. The most common impacts associated with fire use in the Brazilian Amazon are ecological (35%). This study highlights the importance and complexity of the effects of fire use on the Amazon, underscoring the urgent need for policies that integrate sustainable management practices and fire governance. Promoting interdisciplinary research and collaboration among various societal sectors is essential to developing practical solutions protecting Amazonian biodiversity and communities.

Keywords: air pollution, Amazon, bibliometric analysis, Brazil, burning, climate change, fire, Pará, public policies, respiratory diseases, wildfires.

References

Alencar AAC, Arruda VLS, da Silva WV, Conciani DE, Costa DP, Crusco N, Duverger SG, Ferreira NC, Franca-Rocha W, Hasenack H, Martenexen LFM, Piontekowski VJ, Ribeiro NV, Rosa ER, Rosa MR, dos Santos SMB, Shimbo JZ, Vélez-Martin E (2022) Long-term Landsat-based monthly burned area dataset for the Brazilian biomes using deep learning. Remote Sensing 14, 2510.
| Crossref | Google Scholar |

Anderson LO, Aragão LE, Gloor M, Arai E, Adami M, Saatchi SS, Malhi Y, Shimabukuro YE, Barlow J, Berenguer E, Duarte V (2015) Disentangling the contribution of multiple land covers to fire-mediated carbon emissions in Amazonia during the 2010 drought. Global Biogeochemical Cycles 29, 1739-1753.
| Crossref | Google Scholar | PubMed |

Aparecido LEO, Torsoni GB, Dutra AF, Lorençone JA, Lima Leite MR, Lorençone PA, de Alcântara Neto F, Zuffo AM, de Medeiros RLS (2024) Assessing fire risk and safeguarding Brazil’s biomes: a multifactorial approach. Theoretical and Applied Climatology 155, 8815-8824.
| Crossref | Google Scholar |

Aragão LEOC, Anderson LO, Fonseca MG, Rosan TM, Vedovato LB, Wagner FH, Silva CVJ, Silva Junior CHL, Arai E, Aguiar AP, Barlow J, Berenguer E, Deeter MN, Domingues LG, Gatti L, Gloor M, Malhi Y, Marengo JA, Miller JB, Phillips OL, Saatchi S (2018) 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications 9, 536.
| Crossref | Google Scholar | PubMed |

Baker S (2023) North–south publishing data show stark inequities in global research. Nature 624, S1.
| Crossref | Google Scholar | PubMed |

Barlow J, Lennox GD, Ferreira J, Berenguer E, Lees AC, Mac Nally R, Thomson JR, de Barros Ferraz SF, Louzada J, Oliveira VHF, Parry L, de Castro Solar RR, Vieira ICG, Aragão LEOC, Begotti RA, Braga RF, Cardoso TM, de Oliveira RC, Jr, Souza CM, Jr, Moura NG, Nunes SS, Siqueira JV, Pardini R, Silveira JM, Vaz-de-Mello FZ, Veiga RCS, Venturieri A, Gardner TA (2016) Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144-147.
| Crossref | Google Scholar | PubMed |

Barni PE, Rego ACM, Silva FCF, Lopes RAS, Xaud HAM, Xaud MR, Barbosa RI, Fearnside PM (2021) Logging Amazon forest increased the severity and spread of fires during the 2015–2016 El Niño. Forest Ecology and Management 500, 119652.
| Crossref | Google Scholar |

Bevan SL, North PRJ, Grey WMF, Los SO, Plummer SE (2009) Impact of atmospheric aerosol from biomass burning on Amazon dry-season drought. Journal of Geophysical Research: Atmospheres 114, D09204.
| Crossref | Google Scholar |

Birben Ü (2020) The effectiveness of protected areas in biodiversity conservation: the case of Turkey. Cerne 25, 424-438.
| Crossref | Google Scholar |

Bowman MS, Amacher GS, Merry FD (2008) Fire use and prevention by traditional households in the Brazilian Amazon. Ecological Economics 67, 117-130.
| Crossref | Google Scholar |

Brando PM, Balch JK, Nepstad DC, Morton DC, Putz FE, Coe MT, Silvério D, Macedo MN, Davidson EA, Nóbrega CC, Alencar A, Soares-Filho BS (2014) Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proceedings of the National Academy of Sciences of the United States of America 111, 6347-6352.
| Crossref | Google Scholar | PubMed |

Brando PM, Soares-Filho B, Rodrigues L, Assunção A, Morton D, Tuchschneider D, Fernandes ECM, Macedo MN, Oliveira U, Coe MT (2020) The gathering firestorm in southern Amazonia. Science Advances 6, eaay1632.
| Crossref | Google Scholar | PubMed |

Brasil (2024a) Lei n° 14944 de 31 de julho de 2024 – Política Nacional de Manejo Integrado do Fogo. Diário Oficial da União. Available at https://www.planalto.gov.br/ccivil_03/_ato2023-2026/2024/lei/l14944.htm [verified 14 October 2024] [In Portuguese]

Brasil (2024b) Decreto n° 12173 de 10 de setembro de 2024 – Multiagência de Coordenação Operacional Federal. Diário Oficial da União. Available at https://www.planalto.gov.br/ccivil_03/_ato2023-2026/2024/decreto/D12173.htm [Verified 14 October 2024] [In Portuguese]

Briant G, Gond V, Laurance SGW (2010) Habitat fragmentation and the desiccation of forest canopies: a case study from eastern Amazonia. Biological Conservation 143, 2763-2769.
| Crossref | Google Scholar |

Butt EW, Conibear L, Smith C, Baker JCA, Rigby R, Knote C, Spracklen DV (2022) Achieving Brazil’s deforestation target will reduce fire and deliver air quality and public health benefits. Earth’s Future 10, e2022EF003048.
| Crossref | Google Scholar | PubMed |

Cabral ALA, Moras Filho LO, Borges LAC (2013) Uso do fogo na agricultura: legislação, impactos ambientais e realidade na Amazônia. Periódico Eletrônico Fórum Ambiental Da Alta Paulista 9, 159-172.
| Crossref | Google Scholar | PubMed |

Cammelli F, Coudel E, Alves LFN (2019) Smallholders’ perceptions of fire in the Brazilian Amazon: exploring implications for governance arrangements. Human Ecology 47, 601-612.
| Crossref | Google Scholar |

Cammelli F, Garrett RD, Barlow J, Parry L (2020) Fire risk perpetuates poverty and fire use among Amazonian smallholders. Global Environmental Change: Human and Policy Dimensions 63, 102096.
| Crossref | Google Scholar |

Carmenta R, Vermeylen S, Parry L, Barlow J (2013) Shifting cultivation and fire policy: insights from the Brazilian Amazon. Human Ecology 41, 603-614.
| Crossref | Google Scholar |

Celis N, Casallas A, Lopez-Barrera EA, Felician M, de Marchi M, Pappalardo SE (2023) Climate change, forest fires, and territorial dynamics in the Amazon Rainforest: an integrated analysis for mitigation strategies. ISPRS International Journal of Geo-Information 12, 436.
| Crossref | Google Scholar |

Chaves MED, Mataveli G, Conceição KV, Adami M, Petrone FG, Sanches ID (2024) AMACRO: the newer Amazonia deforestation hotspot and a potential setback for Brazilian agriculture. Perspectives in Ecology and Conservation 22, 93-100.
| Crossref | Google Scholar |

Chuvieco E, Aguado I, Salas J, García M, Yebra M, Oliva P (2020) Satellite remote sensing contributions to wildland fire science and management. Current Forestry Reports 6, 81-96.
| Crossref | Google Scholar |

Correa CMA, Salomão RP, Xavier BFS, Noriega JA, Puker A, Ferreira KR (2024) How much biodiversity do we lose in planted forests? A case study with dung beetles in the Brazilian Amazon rainforest. Biologia 79, 3549-3560.
| Crossref | Google Scholar |

da Silva EC, de Azevedo KFS, de Carvalho FG, Juen L, da Rocha TS, Oliveira-Junior JMB (2024a) Impacts of oil palm monocultures on freshwater ecosystems in the Amazon: a case study of dragonflies and damselflies (Insecta: Odonata). Aquatic Sciences 87, 1.
| Crossref | Google Scholar |

da Silva EC, Guerrero-Moreno MA, Oliveira FA, Juen L, de Carvalho FG, Barbosa Oliveira-Junior JM (2024b) The importance of traditional communities in biodiversity conservation. Biodiversity and Conservation 34(2), 685-714.
| Crossref | Google Scholar |

da Silva SS, Brown F, Sampaio AO, Silva ALC, dos Santos NCRS, Lima AC, Aquino AMS, Silva PH, da C, Moreira JGV, Oliveira I, Costa AA, Fearnside PM (2023) Amazon climate extremes: increasing droughts and floods in Brazil’s state of Acre. Perspectives in Ecology and Conservation 21, 311-317.
| Crossref | Google Scholar |

da Silva Junior CA, da Lima M, Teodoro PE, Oliveira-Júnior JF de, Rossi FS, Funatsu BM, Butturi W, Lourençoni T, Kraeski A, Pelissari TD, Moratelli FA, Arvor D, Luz IM dos S, Teodoro LPR, Dubreuil V, Teixeira VM (2022) Fires drive long-term environmental degradation in the Amazon Basin. Remote Sensing 14, 338.
| Crossref | Google Scholar |

de Andrade Filho VS, Artaxo Netto PE, de Souza Hacon S, do Carmo CN (2017) Spatial distribution of biomass burning and mortality among the elderly in a Brazilian Amazon region, 2001 – 2012. Ciencia & Saude Coletiva 22, 245-253.
| Crossref | Google Scholar | PubMed |

de Freitas A, Ferreira J, Escada M, Reis J, Leite C, Andrade D, Spínola J, Soares M, Anderson L (2023) Fire exposure index as a tool for guiding prevention and management. Frontiers in Physics 10, 1064162.
| Crossref | Google Scholar |

de Oliveira OJ, da Silva FF, Juliani F, Barbosa LCFM, Nunhes TV (2019) Bibliometric Method for Mapping the State-of-the-Art and Identifying Research Gaps and Trends in Literature: An Essential Instrument to Support the Development of Scientific Projects. In ‘Scientometrics Recent Advances’. (Eds S Kunosic, E Zerem) pp. 1–20. (IntechOpen Publishing: London, UK)

de Oliveira G, Mataveli G, Stark SC, Jones MW, Carmenta R, Brunsell NA, Santos CAG, da Silva Junior CA, Cunha HFA, da Cunha AC, dos Santos CAC, Stewart H, Boanada Fuchs V, Hellenkamp S, Artaxo P, Alencar AAC, Moutinho P, Shimabukuro YE (2023) Increasing wildfires threaten progress on halting deforestation in Brazilian Amazonia. Nature Ecology & Evolution 7, 1945-1946.
| Crossref | Google Scholar | PubMed |

de Oliveira Andrade R (2019) Alarming surge in Amazon fires prompts global outcry. Nature.
| Crossref | Google Scholar | PubMed |

Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM (2021) How to conduct a bibliometric analysis: an overview and guidelines. Journal of Business Research 133, 285-296.
| Crossref | Google Scholar |

Drobyshev I, Aleinikov A, Lisitsyna O, Aleksutin V, Vozmitel F, Ryzhkova N (2024) The first annually resolved analysis of slash-and-burn practices in the boreal Eurasia suggests their strong climatic and socio-economic controls. Vegetation History and Archaeobotany 33, 301-312.
| Crossref | Google Scholar |

Eufemia L, Dias Turetta AP, Bonatti M, Da Ponte E, Sieber S (2022) Fires in the Amazon Region: Quick Policy Review. Development Policy Review 40(5),.
| Crossref | Google Scholar |

Farid A, Alam MK, Goli VSNS, Akin ID, Akinleye T, Chen X, Cheng Q, Cleall P, Cuomo S, Foresta V, Ge S, Iervolino L, Iradukunda P, Luce CH, Koda E, Mickovski SB, O’Kelly BC, Paleologos EK, Peduto D, Ricketts EJ, Sadegh M, Sarris TS, Singh DN, Singh P, Tang C-S, Tardio G, Vaverková MD, Veneris M, Winkler J (2024) A review of the occurrence and causes for wildfires and their impacts on the geoenvironment. Fire 7, 295.
| Crossref | Google Scholar |

Fawcett D, Sitch S, Ciais P, Wigneron JP, Silva-Junior CHL, Heinrich V, Vancutsem C, Achard F, Bastos A, Yang H, Li X, Albergel C, Friedlingstein P, Aragão LEOC (2023) Declining Amazon biomass due to deforestation and subsequent degradation losses exceeding gains. Global Change Biology 29, 1106-1118.
| Crossref | Google Scholar | PubMed |

Feldpausch TR, Carvalho L, Macario KD, Ascough PL, Flores CF, Coronado ENH, Kalamandeen M, Phillips OL, Staff RA (2022) Forest fire history in Amazonia inferred from intensive soil charcoal sampling and radiocarbon dating. Frontiers in Forests and Global Change 5, 815438.
| Crossref | Google Scholar |

Ferrante L, Fearnside PM (2019) Brazil’s new president and ‘ruralists’ threaten Amazonia’s environment, traditional peoples and the global climate. Environmental Conservation 46, 261-263.
| Crossref | Google Scholar |

Ferrante L, Fearnside PM (2020) The Amazon: biofuels plan will drive deforestation. Nature 577, 170.
| Crossref | Google Scholar | PubMed |

Ferrante L, Gomes M, Fearnside PM (2020) Amazonian Indigenous peoples are threatened by Brazil’s Highway BR-319. Land Use Policy 94, 104548.
| Crossref | Google Scholar |

Flores BM, Montoya E, Sakschewski B, Nascimento N, Staal A, Betts RA, Levis C, Lapola DM, Esquível-Muelbert A, Jakovac C, Nobre CA, Oliveira RS, Borma LS, Nian D, Boers N, Hecht SB, Ter Steege H, Arieira J, Lucas IL, Berenguer E, Marengo JA, Gatti LV, Mattos CRC, Hirota M (2024) Critical transitions in the Amazon forest system. Nature 626, 555-564.
| Crossref | Google Scholar | PubMed |

Frimpong F, Asante MD, Peprah CO, Amankwaa-Yeboah P, Danquah EO, Ribeiro PF, Aidoo AK, Agyeman K, Asante MOO, Keteku A, Botey HM (2023) Water-smart farming: review of strategies, technologies, and practices for sustainable agricultural water management in a changing climate in West Africa. Frontiers in Sustainable Food Systems 7, 1110179.
| Crossref | Google Scholar |

Furtado Lima C, Pereira Torres FT, Minette LJ, Araujo Lima F, Andrade Lima RC, Keisuke Sato M, Araújo Silva A, Leão Said Schettini B, Costa Ferreira FDA, Lima Machado MX (2024) Is there a relationship between forest fires and deforestation in the Brazilian Amazon? PLOS ONE 19(6), e0306238.
| Crossref | Google Scholar |

Garza-Reyes JA (2015) Lean and green — a systematic review of the state of the art literature. Journal of Cleaner Production 102, 18-29.
| Crossref | Google Scholar |

Gatti LV, Basso LS, Miller JB, Gloor M, Domingues LG, Cassol HLG, Tejada G, Aragão LEOC, Nobre C, Peters W, Marani L, Arai E, Sanches AH, Corrêa SM, Anderson L, Von Randow C, Correia CSC, Crispim SP, Neves RAL (2021) Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388-393.
| Crossref | Google Scholar | PubMed |

Gewin V (2023) Pack up the parachute: why global north–south collaborations need to change. Nature 619, 885-887.
| Crossref | Google Scholar | PubMed |

Gillespie TW (2021) Policy, drought and fires combine to affect biodiversity in the Amazon basin. Nature 597, 481-483.
| Crossref | Google Scholar | PubMed |

Guerrero-Moreno MA, Oliveira-Junior JMB (2024a) Approaches, trends, and gaps in community-based ecotourism research: a bibliometric analysis of publications between 2002 and 2022. Sustainability 16, 2639.
| Crossref | Google Scholar |

Guerrero-Moreno MA, Oliveira-Junior JMB (2024b) A global bibliometric analysis of the scientific literature on entomotourism: exploring trends, patterns and research gaps. Biodiversity and Conservation 33, 3929-3959.
| Crossref | Google Scholar |

Guerrero-Moreno MA, Juen L, Puig-Cabrera M, Teodósio MA, Oliveira-Junior JMB (2024) Neotropical dragonflies (Insecta: Odonata) as key organisms for promoting community-based ecotourism in a Brazilian Amazon conservation area. Global Ecology and Conservation 55, e03230.
| Crossref | Google Scholar |

Gupta H, Singh NK (2023) Climate change and biodiversity synergies: a scientometric analysis in the context of UNFCCC and CBD. Anthropocene Science 2, 5-18.
| Crossref | Google Scholar |

Hahn MB, Gangnon RE, Barcellos C, Asner GP, Patz JA (2014) Influence of deforestation, logging, and fire on malaria in the Brazilian Amazon. PLoS One 9, e85725.
| Crossref | Google Scholar | PubMed |

Halofsky JE, Peterson DL, Harvey BJ (2020) Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecology 16, 4.
| Crossref | Google Scholar |

Hamilton D, Gibson W, Harris D, McGath C (2023) Evaluation of multi-spectral band efficacy for mapping wildland fire burn severity from PlanetScope imagery. Remote Sensing 15, 5196.
| Crossref | Google Scholar |

Higa L, Marcato Junior J, Rodrigues T, Zamboni P, Silva R, Almeida L, Liesenberg V, Roque F, Libonati R, Gonçalves WN, Silva J (2022) Active fire mapping on Brazilian Pantanal based on deep learning and CBERS 04A imagery. Remote Sensing 14, 688.
| Crossref | Google Scholar |

Hsieh Y-L, Yeh S-C (2024) The trends of major issues connecting climate change and the sustainable development goals. Discover Sustainability 5, 31.
| Crossref | Google Scholar |

Hupke K-D (2023) Nature conservation in the third world: A pillar of neocolonialism? In ‘Nature Conservation’. pp. 311–314. (Springer: Berlin, Heidelberg) 10.1007/978-3-662-66159-8_31

Ignotti E, Valente JG, Longo KM, Freitas SR, Hacon Sde S, Netto PA (2010) Impact on human health of particulate matter emitted from burnings in the Brazilian Amazon region. Revista de Saúde Pública 44, 121-130.
| Crossref | Google Scholar | PubMed |

INPE (2023a) Monitoramento do desmatamento da floresta amazônica brasileira por satélite. Available at http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes [verified 9 October 2024]

INPE (2023b) Queimadas—Programa Queimadas. Available at https://terrabrasilis.dpi.inpe.br/ [verified 9 October 2024]

Irahola DA, Mora-Motta A, Pereira AB, Bharati L, Biber-Freudenberger L, Petersheim C, Quispe-Zuniga MR, Schmitt CB, Youkhana E (2022) Integrating scientific and local knowledge to address environmental conflicts: the role of academia. Human Ecology 50, 911-923.
| Crossref | Google Scholar |

Jakimow B, Baumann M, Salomão C, Bendini H, Hostert P (2023) Deforestation and agricultural fires in south-west Pará, Brazil, under political changes from 2014 to 2020. Journal of Land Use Science 18, 176-195.
| Crossref | Google Scholar |

Jones MW, Kelley DI, Burton CA, Di Giuseppe F, Barbosa MLF, Brambleby E, Hartley AJ, Lombardi A, Mataveli G, McNorton JR, Spuler FR, Wessel JB, Abatzoglou JT, LO Anderson, Andela N, Archibald S, Armenteras D, Burke E, Carmenta R, Chuvieco E, Clarke H, Doerr SH, Fernandes PM, Giglio L, Hamilton DS, Hantson S, Harris S, Jain P, Kolden CA, Kurvits T, Lampe S, Meier S, New Stacey, Parrington M, Perron MMG, Qu Y, Ribeiro NS, Saharjo BH, San-Miguel-Ayanz J, Shuman JK, Tanpipat V, van der Werf GR, Veraverbeke S, Xanthopoulos G (2024) State of wildfires 2023–2024. Earth System Science Data 16, 3601-3685.
| Crossref | Google Scholar |

Juen L, Cunha EJ, Carvalho FG, Ferreira MC, Begot TO, Andrade AL, Montag LFA (2016) Effects of oil palm plantations on the habitat structure and biota of streams in Eastern Amazon. River Research and Applications 32, 2081-2094.
| Crossref | Google Scholar |

Lapola DM, Pinho P, Barlow J, Aragão LE, Berenguer E, Carmenta R, Liddy HM, Seixas H, Silva CVJ, Silva-Junior CHL, Alencar AAC, Anderson LO, Armenteras D, Brovkin V, Calders K, Chambers J, Chini L, Costa MH, Faria BL, Fearnside PM, Ferreira J, Gatti L, Gutierrez-Velez VH, Han Z, Hibbard K, Koven C, Lawrence P, Pongratz J, Portela BTT, Rounsevell M, Ruane AC, Schaldach R, da Silva SS, von Randow C, Walker WS (2023) The drivers and impacts of Amazon forest degradation. Science 379, eabp8622.
| Crossref | Google Scholar | PubMed |

Li T, Cui L, Liu L, Chen Y, Liu H, Song X, Xu Z (2023) Advances in the study of global forest wildfires. Journal of Soils and Sediments 23, 2654-2668.
| Crossref | Google Scholar |

Lima CF, Torres FTP, Minette LJ, Lima FA, Lima RCA, Sato MK, Silva AA, Schettini BLS, Ferreira FAC, Lima Machado MX (2024) Is there a relationship between forest fires and deforestation in the Brazilian Amazon? PLoS One 19, e0306238.
| Crossref | Google Scholar | PubMed |

Liu J, Wang Y, Lu Y, Zhao P, Wang S, Sun Y, Luo Y (2024) Application of remote sensing and explainable artificial intelligence (XAI) for wildfire occurrence mapping in the mountainous region of southwest China. Remote Sensing 16, 3602.
| Crossref | Google Scholar |

Lynch R, Young JC, Jowaisas C, Sam J, Boakye-Achampong S, Garrido M, Rothschild C (2023) The tears don’t give you funding’: data neocolonialism in development in the Global South. Third World Quarterly 44, 911-929.
| Crossref | Google Scholar |

Ma L, Wu J, Zhang H, Lobora A, Hou Y, Wen Y (2024) Conflict governance between protected areas and surrounding communities: willingness and behaviors of communities—empirical evidence from Tanzania. Diversity 16, 278.
| Crossref | Google Scholar |

Machado MS, Berenguer E, Brando PM, Alencar A, Oliveras Menor I, Barlow J, Malhi Y (2024) Emergency policies are not enough to resolve Amazonia’s fire crises. Communications Earth & Environment 5, 204.
| Crossref | Google Scholar |

Martínez-Vega J, Rodríguez-Rodríguez D (2022) Protected area effectiveness in the scientific literature: a decade-long bibliometric analysis. Land 11, 924.
| Crossref | Google Scholar |

Martins FSRV, Xaud HAM, dos Santos JR, Galvão LS (2012) Effects of fire on above-ground forest biomass in the northern Brazilian Amazon. Journal of Tropical Ecology 28, 591-601.
| Crossref | Google Scholar |

Mason L, White G, Morishima G, Alvarado E, Andrew L, Clark F, Durglo M, Sr , Durglo J, Eneas J, Erickson J, Friedlander M, Hamel K, Hardy C, Harwood T, Haven F, Isaac E, James L, Kenning R, Leighton A, Pierre P, Raish C, Shaw B, Smallsalmon S, Stearns V, Teasley H, Weingart M, Wilder S (2012) Listening and learning from traditional knowledge and western science: a dialogue on contemporary challenges of forest health and wildfire. Journal of Forestry 110, 187-193.
| Crossref | Google Scholar |

Massey R, Berner LT, Foster AC, Goetz SJ, Vepakomma U (2023) Remote sensing tools for monitoring forests and tracking their dynamics. In ‘Advances in Global Change Research’. (Eds MM Girona, H Morin, S Gauthier, Y Bergeron) pp. 637–655. (Springer International Publishing: Cham, Switzerland) 10.1007/978-3-031-15988-6_26

McManus C, Neves AAB, Maranhão AQ, Souza Filho AG, Santana JM (2020) International collaboration in Brazilian science: financing and impact. Scientometrics 125, 2745-2772.
| Crossref | Google Scholar |

Mendes BTFA, Pinheiro MR, Barretto EHP, Barreiros AM, Furquim SAC, Villela FNJ (2023) Impacts of slash-and-burn cultivation on the soil and vegetation of the Atlantic forest in southeastern Brazil. Human Ecology 51, 655-669.
| Crossref | Google Scholar |

Menezes RG, Barbosa R (2021) Environmental governance under Bolsonaro: dismantling institutions, curtailing participation, delegitimising opposition. Zeitschrift für Vergleichende Politikwissenschaft 15, 229-247.
| Crossref | Google Scholar |

Mestre LAM, Cochrane MA, Barlow J (2013) Long‐term changes in bird communities after wildfires in the central Brazilian Amazon. Biotropica 45, 480-488.
| Crossref | Google Scholar |

Mistry J, Schmidt IB, Eloy L, Bilbao B (2019) New perspectives in fire management in South American savannas: the importance of intercultural governance. Ambio 48, 172-179.
| Crossref | Google Scholar | PubMed |

Moreira RM (2024) Trends and correlation between deforestation and precipitation in the Brazilian Amazon biome. Theoretical and Applied Climatology 155, 3683-3692.
| Crossref | Google Scholar |

Morello TF (2022) Subsidization of mechanized tillage as an alternative to fire-based land preparation by smallholders: an economic appraisal of the case of southwestern Brazilian Amazon. Land Use Policy 123, 106427.
| Crossref | Google Scholar |

Morello TF (2023) Hospitalization due to fire-induced pollution in the Brazilian Amazon: a causal inference analysis with an assessment of policy trade-offs. World Development 161, 106123.
| Crossref | Google Scholar |

Morello T, Falcão L (2020) The fire management dilemma in the Brazilian Amazon: synthesizing pathways of causality across five case studies in the state of Pará. Human Ecology 48, 397-409.
| Crossref | Google Scholar |

Morello T, Anderson L, Silva S (2022) Innovative fire policy in the Amazon: a statistical Hicks-Kaldor analysis. Ecological Economics 191, 107248.
| Crossref | Google Scholar |

Neate-Clegg MHC, Şekercioğlu ÇH (2020) Agricultural land in the Amazon basin supports low bird diversity and is a poor replacement for primary forest. The Condor 122, duaa020.
| Crossref | Google Scholar |

Nepstad D, McGrath D, Stickler C, Alencar A, Azevedo A, Swette B, Bezerra T, DiGiano M, Shimada J, da Motta RS, Armijo E, Castello L, Brando P, Hansen MC, McGrath-Horn M, Carvalho O, Hess L (2014) Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 1118-1123.
| Crossref | Google Scholar | PubMed |

O’Hara KC, Ranches J, Roche LM, Schohr TK, Busch RC, Maier GU (2021) Impacts from wildfires on livestock health and production: producer perspectives. Animals 11, 3230.
| Crossref | Google Scholar | PubMed |

Oliveira U, Soares-Filho B, Bustamante M, Gomes L, Ometto JP, Rajão R (2022) Determinants of fire impact in the Brazilian biomes. Frontiers in Forests and Global Change 5, 735017.
| Crossref | Google Scholar |

Oliveira-Junior JMB, Rocha TS, Vinagre SF, Miranda-Filho JC, Mendoza-Penagos CC, Dias-Silva K, Juen L, Calvão LB (2022) A bibliometric analysis of the global research in Odonata: trends and gaps. Diversity 14, 1074.
| Crossref | Google Scholar |

Oluwole O, Otaniyi OO, Ana GA, Olopade CO (2012) Indoor air pollution from biomass fuels: a major health hazard in developing countries. Journal of Public Health 20, 565-575.
| Crossref | Google Scholar |

Osborne T, Cifuentes S, Dev L, Howard S, Marchi E, Withey L, da Silva MSR (2024) Climate justice, forests, and Indigenous Peoples: toward an alternative to REDD + for the Amazon. Climatic Change 177, 128.
| Crossref | Google Scholar |

Pereira HM, Navarro LM, Martins IS (2012) Global biodiversity change: the bad, the good, and the unknown. Annual Review of Environment and Resources 37, 25-50.
| Crossref | Google Scholar |

Pardo M, Li C, He Q, Levin-Zaidman S, Tsoory M, Yu Q, Wang X, Rudich Y (2020) Mechanisms of lung toxicity induced by biomass burning aerosols. Particle and Fibre Toxicology 17, 4.
| Crossref | Google Scholar | PubMed |

Pereira CC, Fernandes S, Kenedy-Siqueira W, Negreiros D, Fernandes GW, Fearnside PM (2024) Brazil’s Cerrado cannot be a sacrifice zone for the Amazon: financial assistance and stricter laws are needed. Bioscience 74, 584-585.
| Crossref | Google Scholar |

Pfaff A, Robalino J, Herrera D, Sandoval C (2015) Protected areas’ impacts on Brazilian Amazon deforestation: examining conservation–development interactions to inform planning. PLoS One 10, e0129460.
| Crossref | Google Scholar | PubMed |

Pivello VR (2011) The use of fire in the Cerrado and Amazonian rainforests of Brazil: past and present. Fire Ecology 7, 24-39.
| Crossref | Google Scholar |

Prosperi P, Bloise M, Tubiello FN, Conchedda G, Rossi S, Boschetti L, Salvatore M, Bernoux M (2020) New estimates of greenhouse gas emissions from biomass burning and peat fires using MODIS Collection 6 burned areas. Climatic Change 161, 415-432.
| Crossref | Google Scholar |

Qin Y, Xiao X, Wigneron J-P, Ciais P, Brandt M, Fan L, Li X, Crowell S, Wu X, Doughty R, Zhang Y, Liu F, Sitch S, Moore B III (2021) Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nature Climate Change 11, 442-448.
| Crossref | Google Scholar |

Qin Y, Xiao X, Liu F, Silva FS, Shimabukuro Y, Arai E, Fearnside PM (2023) Forest conservation in Indigenous territories and protected areas in the Brazilian Amazon. Nature Sustainability 6, 295-305.
| Crossref | Google Scholar |

Rahman SA, Jacobsen JB, Healey JR, Roshetko JM, Sunderland T (2017) Finding alternatives to swidden agriculture: does agroforestry improve livelihood options and reduce pressure on existing forest? Agroforestry Systems 91, 185-199.
| Crossref | Google Scholar |

Rakotonarivo OS, Andriamihaja OR (2023) Global North–Global South research partnerships are still inequitable. Nature Human Behaviour 7, 2042-2043.
| Crossref | Google Scholar | PubMed |

Rakstiņš V, Palkova K, Sprūds A, Agapova O (2024) Minimising the risks of foreign influence in research and academic context. In ‘Integrated Computer Technologies in Mechanical Engineering – 2023. Lecture notes in networks and systems’. (Eds M Nechyporuk, V Pavlikov, D Krytskyi) pp. 98–109. (Springer Nature: Cham, Switzerland) 10.1007/978-3-031-60549-9_8

Ribeiro AFS, Santos L, Randerson JT, Uribe MR, Alencar AAC, Macedo MN, Morton DC, Zscheischler J, Silvestrini RA, Rattis L, Seneviratne SI, Brando PM (2024a) The time since land-use transition drives changes in fire activity in the Amazon-Cerrado region. Communications Earth & Environment 5, 96.
| Crossref | Google Scholar |

Ribeiro MR, Lima MVM, Ilacqua RC, Savoia EJL, Alvarenga R, Vittor AY, Raimundo RD, Laporta GZ (2024b) Amazon wildfires and respiratory health: impacts during the forest fire season from 2009 to 2019. International Journal of Environmental Research and Public Health 21, 675.
| Crossref | Google Scholar | PubMed |

Rocha R, Sant’Anna AA (2022) Winds of fire and smoke: air pollution and health in the Brazilian Amazon. World Development 151, 105722.
| Crossref | Google Scholar |

Rose DC, Evans MC, Jarvis RM (2020) Effective engagement of conservation scientists with decision-makers. In ‘Conservation Research, Policy and Practice’. (Eds WJ Sutherland, PNM Brotherton, ZG Davies, N Ockendon, N Pettorelli, JA Vickery) pp. 162–182. (Cambridge University Press) 10.1017/9781108638210.010

Sample M, Thode AE, Peterson C, Gallagher MR, Flatley W, Friggens M, Evans A, Loehman R, Hedwall S, Brandt L, Janowiak M, Swanston C (2022) Adaptation strategies and approaches for managing fire in a changing cimate. Climate 10, 58.
| Crossref | Google Scholar |

Schmidt MVC, Ikpeng YU, Kayabi T, Sanches RA, Ono KY, Adams C (2021) Indigenous knowledge and forest succession management in the Brazilian Amazon: contributions to reforestation of degraded areas. Frontiers in Forests and Global Change 4,.
| Crossref | Google Scholar |

Shimabukuro YE, Dutra AC, Arai E, Duarte V, Cassol HLG, Pereira G, Cardozo FS (2020) Mapping burned areas of Mato Grosso State Brazilian Amazon using multisensor datasets. Remote Sensing 12, 3827.
| Crossref | Google Scholar |

Silva CA, Santilli G, Sano EE, Laneve G (2021) Fire occurrences and greenhouse gas emissions from deforestation in the Brazilian Amazon. Remote Sensing 13, 376.
| Crossref | Google Scholar |

Silva CVJ, Aragão LEOC, Young PJ, Espirito-Santo F, Berenguer E, Anderson LO, Brasil I, Pontes-Lopes A, Ferreira J, Withey K, França F, Graça PMLA, Kirsten L, Xaud H, Salimon C, Scaranello MA, Castro B, Seixas M, Farias R, Barlow J (2020) Estimating the multi-decadal carbon deficit of burned Amazonian forests. Environmental Research Letters 15, 114023.
| Crossref | Google Scholar |

Silva TFMR (2024) The effect of fire-induced forest-degradation on rainfall: a causal inference analysis of the case of the Brazilian Amazon. World Development Sustainability 5, 100162.
| Crossref | Google Scholar |

Silva Junior CHL, Celentano D, Rousseau GX, de Moura EG, Varga I van D, Martinez C, Martins MB (2020) Amazon forest on the edge of collapse in the Maranhão State, Brazil. Land Use Policy 97, 104806.
| Crossref | Google Scholar |

Silveira MVF, Petri CA, Broggio IS, Chagas GO, Macul MS, Leite CCSS, Ferrari EMM, Amim CGV, Freitas ALR, Motta AZV, Carvalho LME, Silva Junior CHL, Anderson LO, Aragão LEOC (2020) Drivers of fire anomalies in the Brazilian Amazon: lessons learned from the 2019 fire crisis. Land 9, 516.
| Crossref | Google Scholar |

Silvestrini RA, Soares-Filho BS, Nepstad D, Coe M, Rodrigues H, Assunção R (2011) Simulating fire regimes in the Amazon in response to climate change and deforestation. Ecological Applications 21, 1573-1590.
| Crossref | Google Scholar | PubMed |

Sisenando HA, de Medeiros SRB, Artaxo P, Saldiva PHN, Hacon SS (2012) Micronucleus frequency in children exposed to biomass burning in the Brazilian Legal Amazon region: a control case study. BMC Oral Health 12, 6.
| Crossref | Google Scholar | PubMed |

Staal A, Tuinenburg OA, Bosmans JHC, Holmgren M, van Nes EH, Scheffer M, Zemp DC, Dekker SC (2018) Forest-rainfall cascades buffer against drought across the Amazon. Nature Climate Change 8, 539-543.
| Crossref | Google Scholar |

Stegmann LF, França FM, Carvalho RL, Barlow J, Berenguer E, Castello L, Juen L, Baccaro FB, Vieira ICG, Nunes CA, Oliveira R, Venticinque EM, Schietti J, Ferreira J (2024) Brazilian public funding for biodiversity research in the Amazon. Perspectives in Ecology and Conservation 22, 1-7.
| Crossref | Google Scholar |

Tajudin MABA, Madaniyazi L, Seposo X, Sahani M, Tobías A, Latif MT, Wan Mahiyuddin WR, Ibrahim MF, Tamaki S, Moji K, Hashizume M, Ng CFS (2024) Short-term associations of PM10 attributed to biomass burning with respiratory and cardiovascular hospital admissions in Peninsular Malaysia. International Journal of Epidemiology 53, dyae102.
| Crossref | Google Scholar | PubMed |

Tollefson J (2021) COP26 climate summit: a scientists’ guide to a momentous meeting. Nature Available at https://www.nature.com/immersive/d41586-021-02815-w/index.html [verified 14 October 2024].
| Google Scholar |

Trajber Waisbich L (2024) Mobilising international embeddedness to resist radical policy change and dismantling: the case of Brazil under Jair Bolsonaro (2019–2022). Policy Sciences 57, 145-169.
| Crossref | Google Scholar |

UNFCCC (2018) The Katowice climate package: making the Paris Agreement work for all. Available at https://unfccc.int/process-and-meetings/the-paris-agreement/katowice-climate-package [verified 14 October 2024]

van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics 10, 11707-11735.
| Crossref | Google Scholar |

van Raan AFJ (2005) Fatal attraction: conceptual and methodological problems in the ranking of universities by bibliometric methods. Scientometrics 62, 133-143.
| Crossref | Google Scholar |

Vázquez-Varela C, Martínez-Navarro JM, Abad-González L (2022) Traditional fire knowledge: a thematic synthesis approach. Fire 5, 47.
| Crossref | Google Scholar |

Vieira IMC, Toledo PM, Higuchi H (2018) A Amazônia no antropoceno. Ciência e Cultura 70, 56-59.
| Crossref | Google Scholar |

Vieira TA, Rosa LS, Vasconcelos PCS, dos , Santos MM, Modesto RDS (2007) Adoção de sistemas agroflorestais na agricultura familiar, em Igarapé-Açu, Pará, Brasil. Revista de Ciências Agrárias 47, 9-22 Available at https://ajaes.ufra.edu.br/index.php/ajaes/article/view/191 [verified 14 October 2024].
| Google Scholar |

Wagner CS, Park HW, Leydesdorff L (2015) The continuing growth of global cooperation networks in research: a conundrum for national governments. PLoS One 10, e0131816.
| Crossref | Google Scholar | PubMed |

Walker WS, Gorelik SR, Baccini A, Aragon-Osejo JL, Josse C, Meyer C, Macedo MN, Augusto C, Rios S, Katan T, de Souza AA, Cuellar S, Llanos A, Zager I, Mirabal GD, Solvik KK, Farina MK, Moutinho P, Schwartzman S (2020) The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. Proceedings of the National Academy of Sciences of the United States of America 117, 3015-3025.
| Crossref | Google Scholar | PubMed |

Wasserman TN, Mueller SE (2023) Climate influences on future fire severity: a synthesis of climate–fire interactions and impacts on fire regimes, high-severity fire, and forests in the western United States. Fire Ecology 19, 43.
| Crossref | Google Scholar |

West TAP, Börner J, Fearnside PM (2019) Climatic benefits from the 2006–2017 avoided deforestation in Amazonian Brazil. Frontiers in Forests and Global Change 2, 52.
| Crossref | Google Scholar |