Detecting burnt severity and vegetation regrowth classes using a change vector analysis approach: a case study in the southern part of Sumatra, Indonesia
Nitya Ade Santi A , I Nengah Surati Jaya A * , Muhammad Buce Saleh A , Lailan Syaufina B and Budi Kuncahyo AA Department of Forest Management, Faculty of Forestry, IPB University, Indonesia.
B Department of Silviculture, Faculty of Forestry, IPB University, Indonesia.
International Journal of Wildland Fire 31(12) 1114-1128 https://doi.org/10.1071/WF21190
Submitted: 30 December 2021 Accepted: 16 October 2022 Published: 21 November 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of IAWF.
Abstract
This study describes the development of burn severity and vegetation regrowth classes using vegetation (NDVI) and bareland (NDBI) indices-based change vector analysis (VI-CVA) with a case study on the fire event that occurred at the Berbak National Park, Jambi Province, in 2015. The main objective was to determine the type and the severity level of change due to fire or vegetation regrowth, as summarised in CVA magnitude and direction images. The vegetation and bareland indices were derived from Landsat medium-resolution images to detect the degree of change caused by the forest fires. The study found that severity and vegetation regrowth could be classified into five classes: unburnt, very low, low, and moderate severity burn classes and a moderate regrowth class from bare land to oil palm plantation, and unburnt. It was also found that the performance of this CVA approach was superior to the delta normalized burn ratio (dNBR) method as indicated by its ability to detect five post-fire severity classes with 87.7% overall accuracy compared with dNBR, which detected four post-fire severity classes with 66.9% overall accuracy.
Keywords: change vector analysis (CVA), direction, fire severity, forest fire, magnitude, NBR, NDBI, NDVI.
References
Achmad E, Jaya INS, Saleh MB, Kuncahyo B (2013) Biomass estimation using ALOS PALSAR for identification of lowland forest transition ecosystem in Jambi Province. Jurnal Manajemen Hutan Tropika 19, 145–155.| Biomass estimation using ALOS PALSAR for identification of lowland forest transition ecosystem in Jambi Province.Crossref | GoogleScholarGoogle Scholar |
Arifanti VB, Dharmawan IWS, Wicaksono D (2014) Potensi cadangan karbon tegakan hutan sub montana di Taman Nasional Gunung Halimun Salak. Jurnal Penelitian Sosial Dan Ekonomi Kehutanan 11, 29140
| Potensi cadangan karbon tegakan hutan sub montana di Taman Nasional Gunung Halimun Salak. Crossref | GoogleScholarGoogle Scholar | [In Indonesian with English abstract]
Azham Z (2015) Estimasi cadangan karbon pada tutupan lahan hutan sekunder, semak dan belukar di Kota Samarinda. Agrifor: Jurnal Ilmu Pertanian dan Kehutanan 14, 325–338.
| Estimasi cadangan karbon pada tutupan lahan hutan sekunder, semak dan belukar di Kota Samarinda.Crossref | GoogleScholarGoogle Scholar |
Berberoglu S, Akin A (2009) Assessing different remote sensing techniques to detect land use/cover changes in the eastern Mediterranean. International Journal of Applied Earth Observation and Geoinformation 11, 46–53.
| Assessing different remote sensing techniques to detect land use/cover changes in the eastern Mediterranean.Crossref | GoogleScholarGoogle Scholar |
Byrne GF, Crapper PF, Mayo KK (1980) Monitoring land-cover change by principal component analysis of multitemporal Landsat data. Remote Sensing of Environment 10, 175–184.
| Monitoring land-cover change by principal component analysis of multitemporal Landsat data.Crossref | GoogleScholarGoogle Scholar |
Chandler C, Cheney P, Thomas P, Trabaud L, Williams D (1983) ‘Forest Fire Behavior and Effects: Fire in Forestry.’ (Wiley-Interscience: New York, USA)
Chen J, Gong P, He C, Pu R, Shi P (2003) Land-use/land-cover change detection using improved change-vector analysis. Photogrammetric Engineering & Remote Sensing 69, 369–379.
| Land-use/land-cover change detection using improved change-vector analysis.Crossref | GoogleScholarGoogle Scholar |
Christanto N, Sartohadi J, Setiawan M, Shrestha D, Jetten V (2018) ‘Land use change analysis using spectral similarity and vegetation indices and its effect on runoff and sediment yield in tropical environment.’ IOP Conference Series: Earth and Environmental Science. (IOP Publishing)
Cocke AE, Fulé PZ, Crouse JE (2005) Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data. International Journal of Wildland Fire 14, 189–198.
| Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data.Crossref | GoogleScholarGoogle Scholar |
Collins L, Griffioen P, Newell G, Mellor A (2018) The utility of Random Forests for wildfire severity mapping. Remote sensing of Environment 216, 374–384.
| The utility of Random Forests for wildfire severity mapping.Crossref | GoogleScholarGoogle Scholar |
Darwiati W, Tuheteru FD (2010) Dampak kebakaran hutan terhadap pertumbuhan vegetasi. Jurnal Tekno Hutan Tanaman 3, 27–32.
Diek S, Fornallaz F, Schaepman ME, De Jong R (2017) Barest pixel composite for agricultural areas using landsat time series. Remote Sensing 9, 1245
| Barest pixel composite for agricultural areas using landsat time series.Crossref | GoogleScholarGoogle Scholar |
Fauzi , Darusman D, Wijayanto N, Kusmana C (2011) Study the Potential of Carbon in Forest Resources at Gayo Lues. Jurnal Hutan dan Masyarakat 6, 73–78.
Gellert PK (1998) ‘A Brief History and Analysis of Indonesia’s Forest Fire Crisis.’ (Cornell University Press: USA)
He C, Wei A, Shi P, Zhang Q, Zhao Y (2011) Detecting land-use/land-cover change in rural–urban fringe areas using extended change-vector analysis. International Journal of Applied Earth Observation and Geoinformation 13, 572–585.
| Detecting land-use/land-cover change in rural–urban fringe areas using extended change-vector analysis.Crossref | GoogleScholarGoogle Scholar |
Howarth PJ, Wickware GM (1981) Procedures for change detection using Landsat digital data. International Journal of Remote Sensing 2, 277–291.
| Procedures for change detection using Landsat digital data.Crossref | GoogleScholarGoogle Scholar |
IPCC (Intergovernmental Panel on Climate Change) (2003) ‘Good Practice Guidance for Land Use, Land-use Change and Forestry.’ (IGES: Jepang (JP))
Istomo I, Farida NE (2017) Potensi Simpanan Karbon Di Atas Permukaan Tanah Tegakan Acacia nilotica L. (Willd) Ex. Del. Di Taman Nasional Baluran, Jawa Timur. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan 7, 155–162.
| Potensi Simpanan Karbon Di Atas Permukaan Tanah Tegakan Acacia nilotica L. (Willd) Ex. Del. Di Taman Nasional Baluran, Jawa Timur.Crossref | GoogleScholarGoogle Scholar |
Jaya INS (2000) Detecting burnt forest damage using digital spot imagery. Jurnal Manajemen Hutan Tropika 6, 7–23.
Jaya INS (2005) Landslide Detection Technique using multidate SPOT Imageries: A case study in Teradomari, Tochio and Shitada Mura, Niigata, Japan. Jurnal Manajemen Hutan Tropika 11, 31
Jaya INS (2010) ‘Analisis Citra Digital: Perspektif Penginderaan Jarak Jauh untuk Pengelolaan Sumberdaya Alam.’ (IPB Press: Bogor)
Jaya INS, Husaeni E (1999) Evaluation of forest damage due to 1998 fire in East Kalimantan using SPOT imagery: case study in ITC Ltd concession area. In ‘The Third International Symposium on Asian Tropical Forest management – impact of fire and human activities on forest ecosystem in the tropics. Samarinda, Indonesia’. (Tropical Forest Research Center, Mulawarman University and Japan International Cooperation Agency)
Johnson RD, Kasischke ES (1998) Change vector analysis: A technique for the multispectral monitoring of land cover and condition. International Journal of Remote Sensing 19, 411–426.
| Change vector analysis: A technique for the multispectral monitoring of land cover and condition.Crossref | GoogleScholarGoogle Scholar |
Kauth RJ, Thomas G (1976) The tasselled cap a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. LARS Symposia. Paper 159. Available at https://docs.lib.purdue.edu/lars_symp/159/
Keeley JE (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire 18, 116–126.
| Fire intensity, fire severity and burn severity: a brief review and suggested usage.Crossref | GoogleScholarGoogle Scholar |
Key CH, Benson NC (2006) Landscape assessment: ground measure of severity, the Composite Burn Index; and remote sensing of severity, the Normalized Burn Ratio. General Technical Report RMRS-GTR-164. (USDA Forest Service, Rocky Mountains Research Station)
Kontoes CC (2008) Operational land cover change detection using change vector analysis. International Journal of Remote Sensing 29, 4757–4779.
| Operational land cover change detection using change vector analysis.Crossref | GoogleScholarGoogle Scholar |
Krisnawati H (2014) ‘Estimation of forest biomass for quantifying CO2 emissions in Central Kalimantan: a comprehensive approach in determining forest carbon emission factors.’ (Research and Development Center for Conservation and Rehabilitation)
Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33, 159–174.
| The measurement of observer agreement for categorical data.Crossref | GoogleScholarGoogle Scholar |
LAPAN (2016) ‘Informasi Titik Panas (Hotspot) Kebakaran Hutan/Lahan.’ (Lembaga Penerbangan dan Antariksa Nasional: Jakarta)
Lloret F, Zedler PH (2009) The effect of forest fire on vegetation. In ‘Fire effects on soils restoration strategies’. (Eds A Cerda, PR Robichaud) pp. 257–295. (CRC Press)
López García MJ, Caselles V (1991) Mapping burns and natural reforestation using Thematic Mapper data. Geocarto International 6, 31–37.
| Mapping burns and natural reforestation using Thematic Mapper data.Crossref | GoogleScholarGoogle Scholar |
Malila WA (1980) Change vector analysis: an approach for detecting forest changes with Landsat. LARS symposia. Paper 385. Available at https://docs.lib.purdue.edu/lars_symp/385/
Masripatin N (2011) ‘Cadangan karbon pada berbagai tipe hutan dan jenis tanaman di Indonesia.’ (Kementrian Kehutanan: Indonesia (ID))
McLauchlan KK, Higuera PE, Miesel J, Rogers BM, Schweitzer J, Shuman JK, Tepley AJ, Varner JM, Veblen TT, et al. (2020) Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology 108, 2047–2069.
| Fire as a fundamental ecological process: Research advances and frontiers.Crossref | GoogleScholarGoogle Scholar |
Minu S, Shetty A (2015) A comparative study of image change detection algorithms in MATLAB. Aquatic Procedia 4, 1366–1373.
| A comparative study of image change detection algorithms in MATLAB.Crossref | GoogleScholarGoogle Scholar |
Nelson RF (1983) Detecting forest canopy change due to insect activity using Landsat MSS. Photogrammetric Engineering Remote Sensing 49, 1303–1314.
Noor’an RF, Jaya INS, Puspaningsih N (2015) Pendugaan Perubahan Stok Karbon di Taman Nasional Bromo Tengger Semeru. Media Konservasi 20, 177–186.
| Pendugaan Perubahan Stok Karbon di Taman Nasional Bromo Tengger Semeru.Crossref | GoogleScholarGoogle Scholar |
Ongeri D, Kenduiywo BK (2020) Burnt Area Detection Using Medium Resolution Sentinel 2 and Landsat 8 Satellites. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B5-2020, 131–137.
| Burnt Area Detection Using Medium Resolution Sentinel 2 and Landsat 8 Satellites.Crossref | GoogleScholarGoogle Scholar |
Parwati , Zubaidah A, Vetrita Y, Yulianto F, DS , KA, Khomarudin MR (2012) Usage Of Spot-4, Normalized Burn Ratio (NBR) and Normalized Difference Vegetation Index (NDVI) to Identify Burnt Area. GEOMATIKA 18, 29–41.
Prasetyo A, Hikmat A, Prasetyo LB (2011) Pendugaan perubahan cadangan karbon di Tambling Wildlife Nature Conservation Taman Nasional Bukit Barisan Selatan. Media Konservasi 16, 2
| Pendugaan perubahan cadangan karbon di Tambling Wildlife Nature Conservation Taman Nasional Bukit Barisan Selatan.Crossref | GoogleScholarGoogle Scholar |
Prasetyo LB, Wedastra IBK, Maulida PT (2012) ‘Pemetaan Sebaran Karbon di Kabupaten Merauke, Provinsi Papua.’ (WWF Indonesia: Jakarta)
Rakhmawati M (2012) Hubungan Biomassa Penutup Lahan Dengan Indeks Vegetasi di Kabupaten Mamuju Utara, Sulawesi Barat. Majalah Ilmiah Globe 14, 157–169. [In Indonesian with English abstract]
Roemer H, Kaiser G, Sterr H, Ludwig R (2010) Using remote sensing to assess tsunami-induced impacts on coastal forest ecosystems at the Andaman Sea coast of Thailand. Natural Hazards and Earth System Sciences 10, 729–745.
| Using remote sensing to assess tsunami-induced impacts on coastal forest ecosystems at the Andaman Sea coast of Thailand.Crossref | GoogleScholarGoogle Scholar |
Rotinsulu W, Walangitan H, Ahmad A (2018) Analisis Perubahan Tutupan Lahan DAS Tondano, Sulawesi Utara Selama Periode Tahun 2002 Dan 2015. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan 8, 161–169.
| Analisis Perubahan Tutupan Lahan DAS Tondano, Sulawesi Utara Selama Periode Tahun 2002 Dan 2015.Crossref | GoogleScholarGoogle Scholar |
Rouse J, Haas R, Schell J, Deering D (1973) Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. In ‘Progress Report RSC 1978-1’. (Remote Sensing Center: TX, USA)
Singh A (1986) Change detection in the tropical forest environment of northeastern India using Landsat. In ‘Remote sensing and tropical land management. Vol. 44’. pp. 273–254. (Taylor & Francis)
Siwe RN, Koch B (2008) Change vector analysis to categorise land cover change processes using the tasselled cap as biophysical indicator. Environmental Monitoring and Assessment 145, 227–235.
| Change vector analysis to categorise land cover change processes using the tasselled cap as biophysical indicator.Crossref | GoogleScholarGoogle Scholar |
Solichin (2010) ‘Panduan Inventarisas Hutan Rawa Gambut.’ (Merang REDD Pilot Project Palembang: Palembang (ID))
Solichin, Lingenfelder M, Steinmann K (2011) Tier 3 biomass assessment for baseline emission in Merang Peat Swamp Forest. In ‘International Conference on Tropical Wetlands of Indonesia, Bali’. (Center for International Forestry Research)
Sulova A, Jokar Arsanjani J (2021) Exploratory Analysis of Driving Force of Wildfires in Australia: An Application of Machine Learning within Google Earth Engine. Remote Sensing 13, 10
| Exploratory Analysis of Driving Force of Wildfires in Australia: An Application of Machine Learning within Google Earth Engine.Crossref | GoogleScholarGoogle Scholar |
Szpakowski DM, Jensen JLR (2019) A review of the applications of remote sensing in fire ecology. Remote Sensing 11, 2638
| A review of the applications of remote sensing in fire ecology.Crossref | GoogleScholarGoogle Scholar |
Tosiani A, Sugardiman RA, Nugroho S, Usman AB, Rovani R (2018) Analisis Multi Temporal Citra Satelit Landsat untuk Pemantauan Cadangan Karbon Nasional. In ‘Seminar Nasional Geomatika’. (Badan Informasi Geospasial/Geospatial Information Agency) [In Indonesian with English abstract]
Tucker CJ, Sellers PJ (1986) Satellite remote sensing of primary production. International Journal of Remote Sensing 7, 1395–1416.
| Satellite remote sensing of primary production.Crossref | GoogleScholarGoogle Scholar |
Verstegen JA, van der Laan C, Dekker SC, Faaij APC, Santos MJ (2019) Recent and projected impacts of land use and land cover changes on carbon stocks and biodiversity in East Kalimantan, Indonesia. Ecological Indicators 103, 563–575.
| Recent and projected impacts of land use and land cover changes on carbon stocks and biodiversity in East Kalimantan, Indonesia.Crossref | GoogleScholarGoogle Scholar |
Weismiller R, Kristof S, Scholz D, Anuta P, Momin S (1977) Change detection in coastal zone environments. Photogrammetric Engineering Remote Sensing 43, 1533–1539.
Zhang J-H, Yao F-M, Liu C, Yang L-M, Boken VK (2011) Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades—An overview. International Journal of Environmental Research and Public Health 8, 3156–3178.
| Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades—An overview.Crossref | GoogleScholarGoogle Scholar |