Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire

Articles citing this paper

Fire Behavior Experiments in Mixed Fuel Complexes

EA Catchpole, WR Catchpole and RC Rothermel
3(1) pp.45 - 57


48 articles found in Crossref database.

Assessing crown fire potential in coniferous forests of western North America: a critique of current approaches and recent simulation studies
Cruz Miguel G., Alexander Martin E.
International Journal of Wildland Fire. 2010 19(4). p.377
Study of the behaviour of a flame resulting from the combustion of pine needles in a cylindrical basket
Saâdaoui M., Mahjoub Saïd N., Mhiri H., Caminat Ph., Le Palec G., Bournot Ph.
International Journal of Thermal Sciences. 2008 47(3). p.293
Behaviour and effects of prescribed fire in masticated fuelbeds
Knapp Eric E., Varner J. Morgan, Busse Matt D., Skinner Carl N., Shestak Carol J.
International Journal of Wildland Fire. 2011 20(8). p.932
Effect of fire spread, flame characteristic, fire intensity on particulate matter 2.5 released from surface fuel combustion of Pinus koraiensis plantation– A laboratory simulation study
Ning Jibin, Yang Guang, Liu Xinyuan, Geng Daotong, Wang Lixuan, Li Zhaoguo, Zhang Yunlin, Di Xueying, Sun Long, Yu Hongzhou
Environment International. 2022 166 p.107352
Rate of Spread of Free-Burning Fires in Woody Fuels in a Wind Tunnel
CATCHPOLE W.R., CATCHPOLE E.A., BUTLER B.W., ROTHERMEL R. C., MORRIS G. A., LATHAM D. J.
Combustion Science and Technology. 1998 131(1-6). p.1
Modification of the Rothermel model parameters – the rate of surface fire spread of Pinus koraiensis needles under no-wind and various slope conditions
Geng Daotong, Yang Guang, Ning Jibin, Li Ang, Li Zhaoguo, Ma Shangjiong, Wang Xinyu, Yu Hongzhou
International Journal of Wildland Fire. 2024 33(4).
Performance of operational fire spread models in California
Cardil Adrián, Monedero Santiago, SeLegue Phillip, Navarrete Miguel Ángel, de-Miguel Sergio, Purdy Scott, Marshall Geoff, Chavez Tim, Allison Kristen, Quilez Raúl, Ortega Macarena, Silva Carlos A., Ramirez Joaquin
International Journal of Wildland Fire. 2023 32(11). p.1492
An Investigation of Oxygen Availability in Spreading Fires
Howell Alexandra N., Belmont Erica L., McAllister Sara S., Finney Mark A.
Fire Technology. 2023 59(4). p.2147
Fire intensity, fire severity and burn severity: a brief review and suggested usage
Keeley Jon E.
International Journal of Wildland Fire. 2009 18(1). p.116
Interaction between two parallel fire fronts under different wind conditions
Ribeiro Carlos, Reis Luís, Raposo Jorge, Rodrigues André, Viegas Domingos Xavier, Sharples Jason
International Journal of Wildland Fire. 2022 31(5). p.492
Empirical modelling of surface fire behaviour in maritime pine stands
Fernandes Paulo M., Botelho Hermínio S., Rego Francisco C., Loureiro Carlos
International Journal of Wildland Fire. 2009 18(6). p.698
Combustion dynamics of large-scale wildfires
Liu Naian, Lei Jiao, Gao Wei, Chen Haixiang, Xie Xiaodong
Proceedings of the Combustion Institute. 2021 38(1). p.157
Empirical Modeling of Fire Spread Rate in No-Wind and No-Slope Conditions
Rossa Carlos G, Fernandes Paulo M
Forest Science. 2018 64(4). p.358
The effect of fuel bed structure on Rothermel model performance
Campbell-Lochrie Zakary, Gallagher Michael, Skowronski Nicholas, Hadden Rory M.
International Journal of Wildland Fire. 2023 33(1).
Evaluating the 10% wind speed rule of thumb for estimating a wildfire's forward rate of spread against an extensive independent set of observations
Cruz Miguel G., Alexander Martin E., Fernandes Paulo M., Kilinc Musa, Sil Ângelo
Environmental Modelling & Software. 2020 133 p.104818
Effects of spatial and temporal variation in environmental conditions on simulation of wildfire spread
Hilton J.E., Miller C., Sullivan A.L., Rucinski C.
Environmental Modelling & Software. 2015 67 p.118
A multi-additive suppressant agent–based low-flow and long-distance firefighting approach for suppressing wildfires near electrical transmission lines
Lu JiaZheng, Chen Bao-Hui, Wu ChuanPing, Liu Xing, Zhou TeJun, Tan YanJun
Journal of Fire Sciences. 2016 34(5). p.398
An Evaluation of NDFD Weather Forecasts for Wildland Fire Behavior Prediction
Page Wesley G., Wagenbrenner Natalie S., Butler Bret W., Forthofer Jason M., Gibson Chris
Weather and Forecasting. 2018 33(1). p.301
A generic fuel moisture content attenuation factor for fire spread rate empirical models
Rossa Carlos G.
Forest Systems. 2018 27(2). p.e009
Fire Science (2021)
Castro Rego Francisco, Morgan Penelope, Fernandes Paulo, Hoffman Chad
Linear model for spread rate and mass loss rate for mixed-size fuel beds
Viegas Domingos X., Almeida Miguel, Miranda Ana I., Ribeiro Luis M.
International Journal of Wildland Fire. 2010 19(5). p.531
Time-Resolved Radiation and Convection Heat Transfer in Combusting Discontinuous Fuel Beds
Frankman David, Webb Brent W., Butler Bret W.
Combustion Science and Technology. 2010 182(10). p.1391
Experimental study on fire spread over discrete fuel bed-Part I: Effects of packing ratio
He Qianqian, Liu Naian, Xie Xiaodong, Zhang Linhe, Zhang Yang, Yan Weidong
Fire Safety Journal. 2021 126 p.103470
Combustibility of a mixture of live and dead fuel components
Viegas D. X., Soares J., Almeida M.
International Journal of Wildland Fire. 2013 22(7). p.992
Two methods for calculating wildland fire rate of forward spread
Gould Jim S., Sullivan Andrew L.
International Journal of Wildland Fire. 2020 29(3). p.272
A radiation-driven model for crown fire spread
Butler B W, Finney M A, Andrews P L, Albini F A
Canadian Journal of Forest Research. 2004 34(8). p.1588
Modelling of two-dimensional flame spread across a sloping fuel bed
Santoni P.A., Balbi J.H.
Fire Safety Journal. 1998 31(3). p.201
Current approaches to modelling the spread of wildland fire: a review
Perry G. L.W.
Progress in Physical Geography: Earth and Environment. 1998 22(2). p.222
Shrubland fire behaviour modelling with microplot data
Fernandes Paulo M, Catchpole Wendy R, Rego Francisco C
Canadian Journal of Forest Research. 2000 30(6). p.889
Comparison of three methods to quantify the fire spread rate in laboratory experiments
Gould J. S., Sullivan A. L., Hurley R., Koul V.
International Journal of Wildland Fire. 2017 26(10). p.877
Predicting the ignition of crown fuels above a spreading surface fire. Part I: model idealization
Cruz Miguel G., Butler Bret W., Alexander Martin E., Forthofer Jason M., Wakimoto Ronald H.
International Journal of Wildland Fire. 2006 15(1). p.47
Development of fuel models for fire behaviour prediction in maritime pine (Pinus pinaster Ait.) stands
Cruz Miguel G., Fernandes Paulo M.
International Journal of Wildland Fire. 2008 17(2). p.194
Midterm fuel structure recovery and potential fire behaviour in a Pinus pinaster Ait. forest in northern central Spain after thinning and mastication
Jiménez E., Vega-Nieva D., Rey E., Fernández C., Vega J. A.
European Journal of Forest Research. 2016 135(4). p.675
A system to evaluate fire impacts from simulated fire behavior in Mediterranean areas of Central Chile
Castillo Miguel E., Molina Juan R., Rodríguez y Silva Francisco, García-Chevesich Pablo, Garfias Roberto
Science of The Total Environment. 2017 579 p.1410
Assessing improvements in models used to operationally predict wildland fire rate of spread
Cruz Miguel G., Alexander Martin E., Sullivan Andrew L., Gould James S., Kilinc Musa
Environmental Modelling & Software. 2018 105 p.54
Experimental and numerical investigation of fire hazard of vertical greenery systems
Karunaratne Tharindu, Han Shousou, Lau Denvid, Chow Cheuk Lun
Journal of Building Engineering. 2024 95 p.110004
Plant Disturbance Ecology (2007)
Zedler Paul H.
Examining fire behavior in mesquite - acacia shrublands
Streeks Tamara J., Owens M. Keith, Whisenant Steve G.
International Journal of Wildland Fire. 2005 14(2). p.131
A GIS‐supported model for the simulation of the spatial structure of wildland fire, Cass Basin, New Zealand
Perry George L.W., Sparrow Ashley D., Owens Ian F.
Journal of Applied Ecology. 1999 36(4). p.502
Building Rothermel fire behaviour fuel models by genetic algorithm optimisation
Ascoli Davide, Vacchiano Giorgio, Motta Renzo, Bovio Giovanni
International Journal of Wildland Fire. 2015 24(3). p.317
Live Fuel Moisture Content: The ‘Pea Under the Mattress’ of Fire Spread Rate Modeling?
Rossa Carlos G., Fernandes Paulo M.
Fire. 2018 1(3). p.43
Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation
Morvan D., Dupuy J.L.
Combustion and Flame. 2004 138(3). p.199
Wildland fires behaviour: wind effect versus Byram’s convective number and consequences upon the regime of propagation
Morvan D., Frangieh N.
International Journal of Wildland Fire. 2018 27(9). p.636
Modeling Urban/Wildland Interface Fire Hazards within a Geographic Information System
Radke John
Annals of GIS. 1995 1(1). p.9
A GIS based operational system for wildland fire crisis management I. Mathematical modelling and simulation
Vakalis D, Sarimveis H, Kiranoudis C, Alexandridis A, Bafas G
Applied Mathematical Modelling. 2004 28(4). p.389
Fire hazard after prescribed burning in a gorse shrubland: Implications for fuel management
Marino Eva, Guijarro Mercedes, Hernando Carmen, Madrigal Javier, Díez Carmen
Journal of Environmental Management. 2011 92(3). p.1003
Uncertainty associated with model predictions of surface and crown fire rates of spread
Cruz Miguel G., Alexander Martin E.
Environmental Modelling & Software. 2013 47 p.16
Got to burn to learn: the effect of fuel load on grassland fire behaviour and its management implications
Cruz Miguel G., Sullivan Andrew L., Gould James S., Hurley Richard J., Plucinski Matt P.
International Journal of Wildland Fire. 2018 27(11). p.727

Committee on Publication Ethics


Abstract Export Citation Get Permission