Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire

Articles citing this paper

cfArticle2ecfc1291681887$funcTITLE@2000a6d

B. W. Benscoter A E , D. K. Thompson B , J. M. Waddington B , M. D. Flannigan C D , B. M. Wotton C , W. J. de Groot C and M. R. Turetsky A
+ Author Affiliations
- Author Affiliations

A University of Guelph, Department of Integrative Biology, Guelph, ON, N1G 2W1, Canada.

B McMaster University, School of Geography and Earth Sciences, Hamilton, ON, L8S 4K1, Canada.

C Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste Marie, ON, P6A 2E5, Canada.

D University of Alberta, Department of Renewable Resources, Edmonton, AB, T6G 2H1, Canada.

E Corresponding author. Present address: Florida Atlantic University, Department of Biological Sciences, 3200 College Avenue, Davie, FL 33314, USA. Email: brian.benscoter@fau.edu

International Journal of Wildland Fire 20(3) 418-429 https://doi.org/10.1071/WF08183
Submitted: 29 October 2008  Accepted: 8 September 2010   Published: 5 May 2011



145 articles found in Crossref database.

Can rain suppress smoldering peat fire?
Lin Shaorun, Cheung Yau Kuen, Xiao Yang, Huang Xinyan
Science of The Total Environment. 2020 727 p.138468
Post-fire peatland vegetation recovery: a case study in open rich fens of the Canadian boreal forest
Guêné-Nanchen Mélina, LeBlanc Marie-Claire, Rochefort Line
Botany. 2022 100(5). p.435
Smouldering Combustion Dynamics of a Soil from a Pinus halepensis Mill. Forest. A Case Study of the Rocallaura Fires in Northeastern Spain
Xifré-Salvadó Miquel Àngel, Prat-Guitart Núria, Francos Marcos, Úbeda Xavier, Castellnou Marc
Applied Sciences. 2020 10(10). p.3449
Moving beyond bioclimatic envelope models: integrating upland forest and peatland processes to predict ecosystem transitions under climate change in the western Canadian boreal plain
Schneider Richard R., Devito Kevin, Kettridge Nicholas, Bayne Erin
Ecohydrology. 2016 9(6). p.899
Experimental study on peat fire suppression through water injection in laboratory scale
Mulyasih Hafizha, Akbar Lasta A., Ramadhan Mohamad L., Cesnanda Arkan F., Putra Randitia A., Irwansyah Ridho, Nugroho Yulianto S.
Alexandria Engineering Journal. 2022 61(12). p.12525
The effect of long-term drying associated with experimental drainage and road construction on vegetation composition and productivity in boreal fens
Miller Courtney A., Benscoter Brian W., Turetsky Merritt R.
Wetlands Ecology and Management. 2015 23(5). p.845
Ecological impacts of shortening fire return intervals on boreal peatlands and transition zones using integrated in situ field sampling and lidar approaches
Jones Emily, Chasmer Laura, Devito Kevin, Rood Stewart, Hopkinson Christopher
Ecohydrology. 2022 15(3).
Carbon emissions from the peat fire problem—a review
Che Azmi Nor Azizah, Mohd Apandi Nazirah, A. Rashid Ahmad Safuan
Environmental Science and Pollution Research. 2021 28(14). p.16948
Dynamic patterns in winter ungulate browse succession in the Boreal Plains of Alberta
Routh Mélanie R., Nielsen Scott E.
Forest Ecology and Management. 2021 492 p.119242
Can ash from smoldering fires increase peatland soil pH?
Marcotte A. L., Limpens J., Stoof C. R., Stoorvogel J. J.
International Journal of Wildland Fire. 2022 31(6). p.607
Downward spread of smouldering peat fire: the role of moisture, density and oxygen supply
Huang Xinyan, Rein Guillermo
International Journal of Wildland Fire. 2017 26(11). p.907
Smoke exposure levels prediction following laboratory combustion of Pinus koraiensis plantation surface fuel
Ning Jibin, Yang Guang, Zhang Yunlin, Geng Daotong, Wang Lixuan, Liu Xinyuan, Li Zhaoguo, Yu Hongzhou, Zhang Jili, Di Xueying
Science of The Total Environment. 2023 881 p.163402
The impact of root exclusion on duff moisture and fire danger
Thompson Dan K., Studens John, Krezek-Hanes Chelene, Wotton B. Mike
Canadian Journal of Forest Research. 2015 45(8). p.978
A Laboratory-Scale Study of Peat Fire Life-cycle Using Integrated Experimental Rig
Mulyasih Hafizha, Muhammad Bintang Farhan, Nugroho Reza Adyanto, Hapsari Jeihan Kartika, Irwansyah Ridho, Nugroho Yulianto Sulistyo
Thermochimica Acta. 2022 715 p.179288
Numerical investigation of downward smoldering combustion in an organic soil column
Chen Haixiang, Rein Guillermo, Liu Naian
International Journal of Heat and Mass Transfer. 2015 84 p.253
Smouldering fire signatures in peat and their implications for palaeoenvironmental reconstructions
Zaccone Claudio, Rein Guillermo, D’Orazio Valeria, Hadden Rory M., Belcher Claire M., Miano Teodoro M.
Geochimica et Cosmochimica Acta. 2014 137 p.134
Estimating the heat transfer to an organic soil surface during crown fire
Thompson D. K., Wotton B. M., Waddington J. M.
International Journal of Wildland Fire. 2015 24(1). p.120
Field measurements of trace gases emitted by prescribed fires in southeastern US pine forests using an open-path FTIR system
Akagi S. K., Burling I. R., Mendoza A., Johnson T. J., Cameron M., Griffith D. W. T., Paton-Walsh C., Weise D. R., Reardon J., Yokelson R. J.
Atmospheric Chemistry and Physics. 2014 14(1). p.199
Investigating the drivers of the unprecedented Chernobyl Power Plant Wildfire in April 2020 and its effects on 137Cs dispersal
Newman-Thacker Fiona, Turnbull Laura
Natural Hazards. 2021 109(2). p.1877
Effects of spatial heterogeneity in moisture content on the horizontal spread of peat fires
Prat-Guitart Nuria, Rein Guillermo, Hadden Rory M., Belcher Claire M., Yearsley Jon M.
Science of The Total Environment. 2016 572 p.1422
The Proceedings of 11th Asia-Oceania Symposium on Fire Science and Technology (2020)
Palamba Pither, Ramadhan Mohamad Lutfi, Perdana Luthfi Rizki, Dianti Afiri, Ratnasari Nadhira Gilang, Imran Fahri Ali, Kosasih Engkos Achmad, Nugroho Yulianto Sulistyo
Threshold peat burn severity breaks evaporation‐limiting feedback
Wilkinson Sophie L., Verkaik Gregory J., Moore Paul A., Waddington James M.
Ecohydrology. 2020 13(1).
Differential Post-Fire Vegetation Recovery of Boreal Plains Bogs and Margins
Mayner Kristyn M., Moore Paul A., Wilkinson Sophie L., Gage Henry J. M., Waddington James Michael
Wetlands. 2024 44(4).
Tropical Peatland Burn Depth and Combustion Heterogeneity Assessed Using UAV Photogrammetry and Airborne LiDAR
Simpson Jake, Wooster Martin, Smith Thomas, Trivedi Mandar, Vernimmen Ronald, Dedi Rahman, Shakti Mulya, Dinata Yoan
Remote Sensing. 2016 8(12). p.1000
A computational study on the quenching and near-limit propagation of smoldering combustion
Lin Shaorun, Yuan Han, Huang Xinyan
Combustion and Flame. 2022 238 p.111937
Smoldering Combustion and Ground Fires: Ecological Effects and Multi-Scale Significance
Watts Adam C., Kobziar Leda N.
Fire Ecology. 2013 9(1). p.124
Using Holocene paleo-fire records to estimate carbon stock vulnerabilities in Hudson Bay Lowlands peatlands
Davies M.A., McLaughlin J.W., Packalen M.S., Finkelstein S.A., Bataille Clément pierre
FACETS. 2023 8 p.1
Burn severity alters peatland moss water availability: implications for post‐fire recovery
Lukenbach M. C., Devito K. J., Kettridge N., Petrone R. M., Waddington J. M.
Ecohydrology. 2016 9(2). p.341
Hydrologic implications of smoldering fires in wetland landscapes
Watts Adam C., Schmidt Casey A., McLaughlin Daniel L., Kaplan David A.
Freshwater Science. 2015 34(4). p.1394
Wildfire as a key determinant of peatland microtopography
Benscoter Brian W., Greenacre Dan, Turetsky Merritt R.
Canadian Journal of Forest Research. 2015 45(8). p.1132
Using machine learning to predict fire‐ignition occurrences from lightning forecasts
Coughlan Ruth, Di Giuseppe Francesca, Vitolo Claudia, Barnard Christopher, Lopez Philippe, Drusch Matthias
Meteorological Applications. 2021 28(1).
Wildfire likelihood in Canadian treed peatlands based on remote-sensing time-series of surface conditions
Pelletier N., Millard K., Darling S.
Remote Sensing of Environment. 2023 296 p.113747
Soil moisture thresholds for combustion of organic soils in western Tasmania
Prior Lynda D., French Ben J., Storey Kathryn, Williamson Grant J., Bowman David M. J. S.
International Journal of Wildland Fire. 2020 29(7). p.637
Coal and Peat Fires: a Global Perspective (2015)
The resilience and functional role of moss in boreal and arctic ecosystems
Turetsky M. R., Bond‐Lamberty B., Euskirchen E., Talbot J., Frolking S., McGuire A. D., Tuittila E‐S.
New Phytologist. 2012 196(1). p.49
Modeling of Two-Dimensional Natural Downward Smoldering of Peat
Yang Jiuling, Chen Haixiang, Liu Naian
Energy & Fuels. 2016 30(10). p.8765
GAMBUT field experiment of peatland wildfires in Sumatra: from ignition to spread and suppression
Santoso Muhammad A., Christensen Eirik G., Amin Hafiz M. F., Palamba Pither, Hu Yuqi, Purnomo Dwi M. J., Cui Wuquan, Pamitran Agus, Richter Franz, Smith Thomas E. L., Nugroho Yulianto S., Rein Guillermo
International Journal of Wildland Fire. 2022 31(10). p.949
Vulnerability of high-latitude soil organic carbon in North America to disturbance
Grosse Guido, Harden Jennifer, Turetsky Merritt, McGuire A. David, Camill Philip, Tarnocai Charles, Frolking Steve, Schuur Edward A. G., Jorgenson Torre, Marchenko Sergei, Romanovsky Vladimir, Wickland Kimberly P., French Nancy, Waldrop Mark, Bourgeau-Chavez Laura, Striegl Robert G.
Journal of Geophysical Research. 2011 116
Methane Feedbacks to the Global Climate System in a Warmer World
Dean Joshua F., Middelburg Jack J., Röckmann Thomas, Aerts Rien, Blauw Luke G., Egger Matthias, Jetten Mike S. M., de Jong Anniek E. E., Meisel Ove H., Rasigraf Olivia, Slomp Caroline P., in't Zandt Michiel H., Dolman A. J.
Reviews of Geophysics. 2018 56(1). p.207
Plant-soil feedback in the ‘real world’: how does fire fit into all of this?
Kardol P., Yang T., Arroyo D. N., Teste F. P.
Plant and Soil. 2023 485(1-2). p.91
Experimental study of the formation and collapse of an overhang in the lateral spread of smouldering peat fires
Huang Xinyan, Restuccia Francesco, Gramola Michela, Rein Guillermo
Combustion and Flame. 2016 168 p.393
Peatland water repellency: Importance of soil water content, moss species, and burn severity
Moore P.A., Lukenbach M.C., Kettridge N., Petrone R.M., Devito K.J., Waddington J.M.
Journal of Hydrology. 2017 554 p.656
Hydrometeorological conditions preceding wildfire, and the subsequent burning of a fen watershed in Fort McMurray, Alberta, Canada
Elmes Matthew C., Thompson Dan K., Sherwood James H., Price Jonathan S.
Natural Hazards and Earth System Sciences. 2018 18(1). p.157
Investigation of smoldering combustion propagation of dried peat
(2017)
Palamba Pither, Ramadhan M. L., Imran F. A., Kosasih E. A., Nugroho Y. S.
Severe wildfire exposes remnant peat carbon stocks to increased post-fire drying
Kettridge N., Lukenbach M. C., Hokanson K. J., Devito K. J., Petrone R. M., Mendoza C. A., Waddington J. M.
Scientific Reports. 2019 9(1).
Variation in fuel structure of boreal fens
Schiks T.J., Wotton B.M., Turetsky M.R., Benscoter B.W.
Canadian Journal of Forest Research. 2016 46(5). p.683
Investigating the Use of Sentinel-1 for Improved Mapping of Small Peatland Water Bodies: Towards Wildfire Susceptibility Monitoring in Canada’s Boreal Forest
Schultz Samantha, Millard Koreen, Darling Samantha, Chénier René
Hydrology. 2023 10(5). p.102
Fuel load, structure, and potential fire behaviour in black spruce bogs
Johnston D.C., Turetsky M.R., Benscoter B.W., Wotton B.M.
Canadian Journal of Forest Research. 2015 45(7). p.888
Assessing Drivers of Cross-Scale Variability in Peat Smoldering Combustion Vulnerability in Forested Boreal Peatlands
Wilkinson Sophie L., Moore Paul A., Waddington James M.
Frontiers in Forests and Global Change. 2019 2
Seasonally-decomposed Sentinel-1 backscatter time-series are useful indicators of peatland wildfire vulnerability
Millard K., Darling S., Pelletier N., Schultz S.
Remote Sensing of Environment. 2022 283 p.113329
Ecohydrological trade-offs from multiple peatland disturbances: The interactive effects of drainage, harvesting, restoration and wildfire in a southern Ontario bog
McCarter C.P.R., Wilkinson S.L., Moore P.A., Waddington J.M.
Journal of Hydrology. 2021 601 p.126793
Impact of wildfire on soil carbon and nitrogen storage and vegetation succession in the Nanweng'he National Natural Wetlands Reserve, Northeast China
Li Xiaoying, Jin Huijun, He Ruixia, Wang Hongwei, Sun Long, Luo Dongliang, Huang Yadong, Li Yan, Chang Xiaoli, Wang Lizhong, Wei Changlei
CATENA. 2023 221 p.106797
Wetland Carbon and Environmental Management (2021)
Benscoter Brian W., Johnson James, Reger Lisa
Macro- and micronutrient release from ash and litter in permafrost-affected forest
Kuzmina Daria, Loiko Sergey V., Lim Artem G., Istigechev Georgy I., Kulizhsky Sergey P., Julien Frederic, Rols Jean-Luc, Pokrovsky Oleg S.
Geoderma. 2024 447 p.116925
Estimating the Societal Benefits of Carbon Dioxide Sequestration Through Peatland Restoration
Pindilli Emily, Sleeter Rachel, Hogan Dianna
Ecological Economics. 2018 154 p.145
Spatial and temporal variability of forest floor duff characteristics in long-unburnedPinus palustrisforests
Kreye Jesse K., Varner J. Morgan, Dugaw Christopher J.
Canadian Journal of Forest Research. 2014 44(12). p.1477
Evaluation of the impact of freezing technique on pore-structure characteristics of highly decomposed peat using X-ray micro-computed tomography
Al Majou Hassan, Bruand Ary, Rozenbaum Olivier, Le Trong Emmanuel
International Agrophysics. 2022 36(3). p.223
Resurfacing of underground peat fire: smouldering transition to flaming wildfire on litter surface
Zhang Yichao, Shu Yang, Qin Yunzhu, Chen Yuying, Lin Shaorun, Huang Xinyan, Zhou Mei
International Journal of Wildland Fire. 2024 33(2).
Hydrogeological controls on post-fire moss recovery in peatlands
Lukenbach M.C., Devito K.J., Kettridge N., Petrone R.M., Waddington J.M.
Journal of Hydrology. 2015 530 p.405
Mitigating wildfire carbon loss in managed northern peatlands through restoration
Granath Gustaf, Moore Paul A., Lukenbach Maxwell C., Waddington James M.
Scientific Reports. 2016 6(1).
Model comparisons for estimating carbon emissions from North American wildland fire
French Nancy H. F., de Groot William J., Jenkins Liza K., Rogers Brendan M., Alvarado Ernesto, Amiro Brian, de Jong Bernardus, Goetz Scott, Hoy Elizabeth, Hyer Edward, Keane Robert, Law B. E., McKenzie Donald, McNulty Steven G., Ottmar Roger, Pérez-Salicrup Diego R., Randerson James, Robertson Kevin M., Turetsky Merritt
Journal of Geophysical Research. 2011 116
Towards quantifying the negative feedback regulation of peatland evaporation to drought
Kettridge Nicholas, Waddington J. M.
Hydrological Processes. 2014 28(11). p.3728
Criteria-Based Identification of Important Fuels for Wildland Fire Emission Research
Watts Adam C., Samburova Vera, Moosmüller Hans
Atmosphere. 2020 11(6). p.640
Effects of fuel characteristics on horizontal spread rate and ground surface temperatures of smouldering duff
Cowan Daniel A., Page Wesley G., Butler Bret W., Blunck David L.
International Journal of Wildland Fire. 2020 29(9). p.820
Influence of Fuel Load Dynamics on Carbon Emission by Wildfires in the Clay Belt Boreal Landscape
Terrier Aurélie, Paquette Mathieu, Gauthier Sylvie, Girardin Martin, Pelletier-Bergeron Sylvain, Bergeron Yves
Forests. 2016 8(1). p.9
The Influence of Seismic Lines on Wildfire Potential in the Boreal Region of Northern Alberta, Canada
Weiland Lelia, Green-Harrison Tori, Ketcheson Scott
Forests. 2023 14(8). p.1574
Effects of trees on the burning of organic layers on permafrost terrain
Kasischke Eric S., Turetsky Merritt R., Kane Evan S.
Forest Ecology and Management. 2012 267 p.127
Postfire Soil Carbon Accumulation Does Not Recover Boreal Peatland Combustion Loss in Some Hydrogeological Settings
Ingram R. C., Moore P. A., Wilkinson S., Petrone R. M., Waddington J. M.
Journal of Geophysical Research: Biogeosciences. 2019 124(4). p.775
Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland
Davies G. Matt, Gray Alan, Rein Guillermo, Legg Colin J.
Forest Ecology and Management. 2013 308 p.169
Quantifying the role of fire in the Earth system – Part 1: Improved global fire modeling in the Community Earth System Model (CESM1)
Li F., Levis S., Ward D. S.
Biogeosciences. 2013 10(4). p.2293
Thermogravimetric analysis of peat decomposition under different oxygen concentrations
Zhao Weitao, Chen Haixiang, Liu Naian, Zhou Jianjun
Journal of Thermal Analysis and Calorimetry. 2014 117(1). p.489
Tree species identity in high-latitude forests determines fire spread through fuel ladders from branches to soil and vice versa
Blauw Luke G., van Logtestijn Richard S.P., Broekman Rob, Aerts Rien, Cornelissen J. Hans C.
Forest Ecology and Management. 2017 400 p.475
Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires (2019)
Reardon Jim
Autothermal pyrolysis of biomass due to intrinsic thermal decomposition effects
Tabakaev R. B., Astafev A. V., Dubinin Y. V., Yazykov N. A., Zavorin A. S., Yakovlev V. A.
Journal of Thermal Analysis and Calorimetry. 2018 134(2). p.1045
INFERNO-peat v1.0.0: a representation of northern high-latitude peat fires in the JULES-INFERNO global fire model
Blackford Katie R., Kasoar Matthew, Burton Chantelle, Burke Eleanor, Prentice Iain Colin, Voulgarakis Apostolos
Geoscientific Model Development. 2024 17(8). p.3063
Low‐severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition
Flanagan Neal E., Wang Hongjun, Winton Scott, Richardson Curtis J.
Global Change Biology. 2020 26(7). p.3930
Charring temperatures are driven by the fuel types burned in a peatland wildfire
Hudspith Victoria A., Belcher Claire M., Yearsley Jonathan M.
Frontiers in Plant Science. 2014 5
Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires (2020)
Reardon Jim
The resistance and short‐term resilience of a restored extracted peatland ecosystems post‐fire: an opportunistic study after a wildfire
Blier‐Langdeau Ariane, Guêné‐Nanchen Mélina, Hugron Sandrine, Rochefort Line
Restoration Ecology. 2022 30(4).
Modelling smoke distribution in the vicinity of a large and prolonged fire from an open-cut coal mine
Luhar Ashok K., Emmerson Kathryn M., Reisen Fabienne, Williamson Grant J., Cope Martin E.
Atmospheric Environment. 2020 229 p.117471
Shallow peat is most vulnerable to high peat burn severity during wildfire
Wilkinson S L, Tekatch A M, Markle C E, Moore P A, Waddington J M
Environmental Research Letters. 2020 15(10). p.104032
Study on the Limit of Moisture Content of Smoldering Humus during Sub-Surface Fires in the Boreal Forests of China
Yin Sainan, Shan Yanlong, Tang Shuyuan, Douglas Grahame, Yu Bo, Cui Chenxi, Cao Lili
Forests. 2023 14(2). p.252
Wetland Successional State Affects Fire Severity in a Boreal Shield Landscape
Markle Chantel E., Gage Henry J. M., Tekatch Alex M., Wilkinson Sophie L., Waddington James M.
Wetlands. 2022 42(7).
Impacts of wildfire and landscape factors on organic soil properties in Arctic tussock tundra
He Jiaying, Chen Dong, Jenkins Liza, Loboda Tatiana V
Environmental Research Letters. 2021 16(8). p.085004
Roles of Bryophytes in Forest Sustainability—Positive or Negative?
Glime Janice M.
Sustainability. 2024 16(6). p.2359
Fine‐scale distribution of moisture in the surface of a degraded blanket bog and its effects on the potential spread of smouldering fire
Prat‐Guitart Nuria, Belcher Claire M., Thompson Dan K., Burns Paul, Yearsley Jon M.
Ecohydrology. 2017 10(8).
A hydrogeological landscape framework to identify peatland wildfire smouldering hot spots
Hokanson K.J., Moore P.A., Lukenbach M.C., Devito K.J., Kettridge N., Petrone R.M., Mendoza C.A., Waddington J.M.
Ecohydrology. 2018 11(4).
Peatland-fire interactions: A review of wildland fire feedbacks and interactions in Canadian boreal peatlands
Nelson K., Thompson D., Hopkinson C., Petrone R., Chasmer L.
Science of The Total Environment. 2021 769 p.145212
Hydrological controls on deep burning in a northern forested peatland
Lukenbach Maxwell Curtis, Hokanson Kelly Jean, Moore Paul A., Devito Kevin J., Kettridge Nicholas, Thompson Daniel K., Wotton Brian M., Petrone Richard Michael, Waddington James Michael
Hydrological Processes. 2015 29(18). p.4114
Short- and long-term hydrologic controls on smouldering fire in wetland soils
Schulte Morgan L., McLaughlin Daniel L., Wurster Frederic C., Varner J. Morgan, Stewart Ryan D., Aust W. Mike, Jones C. Nathan, Gile Bridget
International Journal of Wildland Fire. 2019 28(3). p.177
Roles of climatic and anthropogenic factors in shaping Holocene vegetation and fire regimes in Great Dismal Swamp, eastern USA
Willard D.A., Jones M.C., Alder J., Fastovich D., Hoefke K., Poirier R.K., Wurster F.C.
Quaternary Science Reviews. 2023 311 p.108153
Deeper burning in a boreal fen peatland 1‐year post‐wildfire accelerates recovery trajectory of carbon dioxide uptake
Morison Matthew, van Beest Christine, Macrae Merrin, Nwaishi Felix, Petrone Richard
Ecohydrology. 2021 14(3).
Effects of moisture and inorganic contents on smoldering spread rate of peat
INTERNATIONAL CONFERENCE ON TRENDS IN MATERIAL SCIENCE AND INVENTIVE MATERIALS: ICTMIM 2020 (2020)
Mulyasih Hafizha, Putra Randitia Andika, Akbar Lasta Azmillah, Nugroho Yulianto Sulistyo, Irwansyah Ridho
Interactions of Earth's atmospheric oxygen and fuel moisture in smouldering wildfires
Huang Xinyan, Rein Guillermo
Science of The Total Environment. 2016 572 p.1440
Deep peat fire persistently smouldering for weeks: a laboratory demonstration
Qin Yunzhu, Musa Dayang Nur Sakinah, Lin Shaorun, Huang Xinyan
International Journal of Wildland Fire. 2022 32(1). p.86
Peat fires and legacy toxic metal release: An integrative biogeochemical and ecohydrological conceptual framework
McCarter Colin P.R., Clay Gareth D., Wilkinson Sophie L., Sigmund Gabriel, Davidson Scott J., Taufik Muh, Page Susan, Shuttleworth Emma L., McLagan David, Chenier Grant, Clark Alexandra, Waddington James M.
Earth-Science Reviews. 2024  p.104867
Peat surface compression reduces smouldering fire potential as a novel fuel treatment for boreal peatlands
Deane P.J., Wilkinson S.L., Verkaik G.J., Moore P.A., Schroeder D., Waddington J.M.
Canadian Journal of Forest Research. 2022 52(3). p.396
Dynamics of moisture content in spruce–feather moss and spruce–Sphagnum organic layers during an extreme fire season and implications for future depths of burn in Clay Belt black spruce forests
Terrier Aurélie, de Groot William J., Girardin Martin P., Bergeron Yves
International Journal of Wildland Fire. 2014 23(4). p.490
Satellite soil moisture observations predict burned area in Southeast Asian peatlands
Dadap Nathan C, Cobb Alexander R, Hoyt Alison M, Harvey Charles F, Konings Alexandra G
Environmental Research Letters. 2019 14(9). p.094014
Peat properties and water retention in boreal forested peatlands subject to wildfire
Thompson Dan K., Waddington James M.
Water Resources Research. 2013 49(6). p.3651
Forest floor depths and fuel loads in upland Canadian forests
Letang D.L., de Groot W.J.
Canadian Journal of Forest Research. 2012 42(8). p.1551
Wildfire effects on vadose zone hydrology in forested boreal peatland microforms
Thompson Dan K., Waddington James M.
Journal of Hydrology. 2013 486 p.48
Controls on boreal peat combustion and resulting emissions of carbon and mercury
Kohlenberg Andrew J, Turetsky Merritt R, Thompson Dan K, Branfireun Brian A, Mitchell Carl P J
Environmental Research Letters. 2018 13(3). p.035005
Assessing methane emissions for northern peatlands in ORCHIDEE-PEAT revision 7020
Salmon Elodie, Jégou Fabrice, Guenet Bertrand, Jourdain Line, Qiu Chunjing, Bastrikov Vladislav, Guimbaud Christophe, Zhu Dan, Ciais Philippe, Peylin Philippe, Gogo Sébastien, Laggoun-Défarge Fatima, Aurela Mika, Bret-Harte M. Syndonia, Chen Jiquan, Chojnicki Bogdan H., Chu Housen, Edgar Colin W., Euskirchen Eugenie S., Flanagan Lawrence B., Fortuniak Krzysztof, Holl David, Klatt Janina, Kolle Olaf, Kowalska Natalia, Kutzbach Lars, Lohila Annalea, Merbold Lutz, Pawlak Włodzimierz, Sachs Torsten, Ziemblińska Klaudia
Geoscientific Model Development. 2022 15(7). p.2813
Quantification of fuel moisture effects on biomass consumed derived from fire radiative energy retrievals
Smith Alistair M. S., Tinkham Wade T., Roy David P., Boschetti Luigi, Kremens Robert L., Kumar Sanath S., Sparks Aaron M., Falkowski Michael J.
Geophysical Research Letters. 2013 40(23). p.6298
Did enhanced afforestation cause high severity peat burn in the Fort McMurray Horse River wildfire?
Wilkinson S L, Moore P A, Flannigan M D, Wotton B M, Waddington J M
Environmental Research Letters. 2018 13(1). p.014018
The effects of black spruce fuel management on surface fuel condition and peat burn severity in an experimental fire
Wilkinson S.L., Moore P.A., Thompson D.K., Wotton B.M., Hvenegaard S., Schroeder D., Waddington J.M.
Canadian Journal of Forest Research. 2018 48(12). p.1433
Impact of prescribed burning on blanket peat hydrology
Holden Joseph, Palmer Sheila M., Johnston Kerrylyn, Wearing Catherine, Irvine Brian, Brown Lee E.
Water Resources Research. 2015 51(8). p.6472
Insights and issues with estimating northern peatland carbon stocks and fluxes since the Last Glacial Maximum
Loisel Julie, van Bellen Simon, Pelletier Luc, Talbot Julie, Hugelius Gustaf, Karran Daniel, Yu Zicheng, Nichols Jonathan, Holmquist James
Earth-Science Reviews. 2017 165 p.59
Effects of distance from canal and degradation history on peat bulk density in a degraded tropical peatland
Sinclair Amanda L., Graham Laura L.B., Putra Erianto I., Saharjo Bambang H., Applegate Grahame, Grover Samantha P., Cochrane Mark A.
Science of The Total Environment. 2020 699 p.134199
The variation of carbon content and bulk density on different time period post fire and peat depth
Qirom Muhammad Abdul, Yuwati Tri Wira, Rachmanadi Dony, Halwany Wawan
IOP Conference Series: Earth and Environmental Science. 2021 886(1). p.012096
A Markov chain method for simulating bulk density profiles in boreal peatlands
Thompson Dan K., Waddington James M.
Geoderma. 2014 232-234 p.123
Recent massive expansion of wildfire and its impact on active layer over pan-Arctic permafrost
Zhu Xingru, Xu Xiyan, Jia Gensuo
Environmental Research Letters. 2023 18(8). p.084010
A Field Study of Tropical Peat Fire Behaviour and Associated Carbon Emissions
Graham Laura L. B., Applegate Grahame B., Thomas Andri, Ryan Kevin C., Saharjo Bambang H., Cochrane Mark A.
Fire. 2022 5(3). p.62
Computational study of critical moisture and depth of burn in peat fires
Huang Xinyan, Rein Guillermo
International Journal of Wildland Fire. 2015 24(6). p.798
Upward-and-downward spread of smoldering peat fire
Huang Xinyan, Rein Guillermo
Proceedings of the Combustion Institute. 2019 37(3). p.4025
How to build a firebreak to stop smouldering peat fire: insights from a laboratory-scale study
Lin Shaorun, Liu Yanhui, Huang Xinyan
International Journal of Wildland Fire. 2021 30(6). p.454
Impact of wildfire on permafrost landscapes: A review of recent advances and future prospects
Holloway Jean E., Lewkowicz Antoni G., Douglas Thomas A., Li Xiaoying, Turetsky Merritt R., Baltzer Jennifer L., Jin Huijun
Permafrost and Periglacial Processes. 2020 31(3). p.371
Long-Term Carbon Sequestration in Boreal Forested Peatlands in Eastern Canada
Magnan Gabriel, Garneau Michelle, Le Stum-Boivin Éloïse, Grondin Pierre, Bergeron Yves
Ecosystems. 2020 23(7). p.1481
Near‐surface controls on peatland hydrology: Implications for rapid adaptation and enhanced resilience to disturbances
Tilak Amey S., Hoyne Seamus, Kettridge Nicholas
Ecohydrology. 2022 15(6).
A Soil Moisture and Vegetation-Based Susceptibility Mapping Approach to Wildfire Events in Greece
Chaleplis Kyriakos, Walters Avery, Fang Bin, Lakshmi Venkataraman, Gemitzi Alexandra
Remote Sensing. 2024 16(10). p.1816
Disturbance legacies and paludification mediate the ecological impact of an intensifying wildfire regime in theClayBelt boreal forest of easternNorthAmerica
Terrier Aurélie, Girardin Martin P., Cantin Alan, de Groot William J., Anyomi Kenneth Agbesi, Gauthier Sylvie, Bergeron Yves, Gilliam Frank
Journal of Vegetation Science. 2015 26(3). p.588
Seismic Lines in Treed Boreal Peatlands as Analogs for Wildfire Fuel Modification Treatments
Deane Patrick Jeffrey, Wilkinson Sophie Louise, Moore Paul Adrian, Waddington James Michael
Fire. 2020 3(2). p.21
Influence of Fuel Properties on the Light Absorption of Fresh and Laboratory-Aged Atmospheric Brown Carbon Produced from Realistic Combustion of Boreal Peat and Spruce Foliage
Lyu Ming, Young Cora J., Thompson Dan K., Styler Sarah A.
Environmental Science & Technology. 2024 58(11). p.5035
The effects of humus moisture content on underground fires in a Larix gmelinii plantation
Han Xiyue, Xu Hening, Wang Tiantian, Yin Sainan, Gao Bo, Wang Yajun, Shan Yanlong
Journal of Forestry Research. 2022 33(3). p.865
Experimental assessment of tundra fire impact on element export and storage in permafrost peatlands
Kuzmina Daria, Lim Artem G., Loiko Sergey V., Pokrovsky Oleg S.
Science of The Total Environment. 2022 853 p.158701
Experimental short-time wildfire simulation—Physicochemical changes of forest mucky topsoil
Kupka Dawid, Khan Muhammad Owais, Kwika Agata, Słowik-Opoka Ewa, Klamerus-Iwan Anna
Frontiers in Forests and Global Change. 2022 5
Fuel-Specific Aggregation of Active Fire Detections for Rapid Mapping of Forest Fire Perimeters in Mexico
Briones-Herrera Carlos Ivan, Vega-Nieva Daniel José, Briseño-Reyes Jaime, Monjarás-Vega Norma Angélica, López-Serrano Pablito Marcelo, Corral-Rivas José Javier, Alvarado Ernesto, Arellano-Pérez Stéfano, Jardel Peláez Enrique J., Pérez Salicrup Diego Rafael, Jolly William Matthew
Forests. 2022 13(1). p.124
Assessing moss transplant methods to enhance Sphagnum moss recovery in post-wildfire hydrophobic peat
Gage H.J.M., Moore P.A., MacKinnon B., Granath G., Wilkinson S.L., Waddington J.M.
Ecological Engineering. 2024 205 p.107292
Examining the utility of the Canadian Forest Fire Weather Index System in boreal peatlands
Waddington J.M., Thompson D.K., Wotton M., Quinton W.L., Flannigan M.D., Benscoter B.W., Baisley S.A., Turetsky M.R.
Canadian Journal of Forest Research. 2012 42(1). p.47
Hydrologic‐based modelling of burn depth potentials in degraded peat soils
Link Nicholas T., McLaughlin Daniel L., Stewart Ryan D., Strahm Brian D., Varner J. Morgan, Word Clayton S., Wurster Frederic C.
Hydrological Processes. 2023 37(1).
Experimental drying intensifies burning and carbon losses in a northern peatland
Turetsky M.R., Donahue W.F., Benscoter B.W.
Nature Communications. 2011 2(1).
Carbon Dioxide Emissions and Methane Flux from Forested Wetland Soils of the Great Dismal Swamp, USA
Gutenberg Laurel, Krauss Ken W., Qu John J., Ahn Changwoo, Hogan Dianna, Zhu Zhiliang, Xu Chenyang
Environmental Management. 2019 64(2). p.190
Climate-induced Arctic-boreal peatland fire and carbon loss in the 21st century
Lin Shaorun, Liu Yanhui, Huang Xinyan
Science of The Total Environment. 2021 796 p.148924
Groundwater connectivity controls peat burn severity in the boreal plains
Hokanson K. J., Lukenbach M. C., Devito K. J., Kettridge N., Petrone R. M., Waddington J. M.
Ecohydrology. 2016 9(4). p.574
A new method for performing smouldering combustion field experiments in peatlands and rich-organic soils
Pastor E., Oliveras I., Urquiaga-Flores E., Quintano-Loayza J. A., Manta M. I., Planas E.
International Journal of Wildland Fire. 2017 26(12). p.1040
Spectral detection of near-surface moisture content and water-table position in northern peatland ecosystems
Meingast Karl M., Falkowski Michael J., Kane Evan S., Potvin Lynette R., Benscoter Brian W., Smith Alistair M.S., Bourgeau-Chavez Laura L., Miller Mary Ellen
Remote Sensing of Environment. 2014 152 p.536
Wildfire overrides hydrological controls on boreal peatland methane emissions
Davidson Scott J., Van Beest Christine, Petrone Richard, Strack Maria
Biogeosciences. 2019 16(13). p.2651
Moderate drop in water table increases peatland vulnerability to post-fire regime shift
Kettridge N., Turetsky M. R., Sherwood J. H., Thompson D. K., Miller C. A., Benscoter B. W., Flannigan M. D., Wotton B. M., Waddington J. M.
Scientific Reports. 2015 5(1).
Global vulnerability of peatlands to fire and carbon loss
Turetsky Merritt R., Benscoter Brian, Page Susan, Rein Guillermo, van der Werf Guido R., Watts Adam
Nature Geoscience. 2015 8(1). p.11
Advances in wetland hydrology: the Canadian contribution over 75 years
Price Jonathan S., Sutton Owen F., McCarter Colin P. R., Quinton William L., Waddington James M., Whittington Pete N., Strack Maria, Petrone Rich M.
Canadian Water Resources Journal / Revue canadienne des ressources hydriques. 2023 48(4). p.379
Effects of fire on the hydrology, biogeochemistry, and ecology of peatland river systems
Brown Lee E., Holden Joseph, Palmer Sheila M., Johnston Kerrylyn, Ramchunder Sorain J., Grayson Richard
Freshwater Science. 2015 34(4). p.1406
Changing Arctic River Dynamics Cause Localized Permafrost Thaw
Zheng Lei, Overeem Irina, Wang Kang, Clow Gary D.
Journal of Geophysical Research: Earth Surface. 2019 124(9). p.2324
Organic soil combustion in cypress swamps: Moisture effects and landscape implications for carbon release
Watts Adam C.
Forest Ecology and Management. 2013 294 p.178
Using Multitemporal and Multispectral Airborne Lidar to Assess Depth of Peat Loss and Correspondence With a New Active Normalized Burn Ratio for Wildfires
Chasmer L. E., Hopkinson C. D., Petrone R. M., Sitar M.
Geophysical Research Letters. 2017 44(23).

Committee on Publication Ethics


Abstract Supplementary MaterialSupplementary Material (178 KB) Export Citation Get Permission