Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Analysis of the miRNA transcriptome during testicular development and spermatogenesis of the Mongolian horse

Bei Li https://orcid.org/0000-0002-2841-7700 A , Xiaolong He B , Yiping Zhao A , Dongyi Bai A , Dandan Li A , Zhiyu Zhou A and Dugarjaviin Manglai A C
+ Author Affiliations
- Author Affiliations

A College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Zhaowuda RD.306, Hohhot, Inner Mongolia, PR China.

B Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Zhaojun RD.22, Hohhot, Inner Mongolia, PR China.

C Corresponding author. Email: dmanglai@163.com

Reproduction, Fertility and Development 32(6) 582-593 https://doi.org/10.1071/RD19133
Submitted: 13 August 2018  Accepted: 1 October 2019   Published: 6 February 2020

Abstract

Numerous studies have shown that microRNAs (miRNAs) are essential for testicular development and spermatogenesis. In order to further characterise these physiological processes, three immature and three mature testes of the Mongolian horse were collected and six libraries were established. Using small RNA sequencing technology, 531 mature miRNAs were identified, including 46 novel miRNAs without previously ascribed functions. Among the 531 miRNAs, 421 were expressed in both immature and mature libraries, 65 miRNAs were found solely in immature testis libraries and 45 miRNAs were found solely in mature testis libraries. Furthermore, among the miRNAs that were identified in both immature and mature libraries, 107 were significantly differentially expressed (corrected P value (padj) < 0.05). Among the miRNAs that were only expressed in immature testes, two miRNAs were differentially expressed, whereas among the miRNAs that were only expressed in mature testes, nine miRNAs were differentially expressed. Comprehensive analysis of miRNA and mRNA expression profiles predicted 107 miRNA–mRNA interaction sites. Gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis of the predicted target genes suggested roles of the differentially expressed miRNAs in testicular development and spermatogenesis. These findings identify miRNAs as key factors in the development of the testes and spermatogenesis in the Mongolian horse, which may also help us to understand the mechanisms of fertility in related mammalian species.

Graphical Abstract Image

Additional keywords: equine, gametogenesis, non-coding RNA, reproductive development.


References

Bailey, T. A., and Lierz, M. (2017). Veterinary aspects of bird of prey reproduction. Vet. Clin. North Am. Exot. Anim. Pract. 20, 455–483.
Veterinary aspects of bird of prey reproduction.Crossref | GoogleScholarGoogle Scholar | 28340888PubMed |

Bao, J., Li, D., Wang, L., Wu, J., Hu, Y., Wang, Z., Chen, Y., Cao, X., Jiang, C., Yan, W., and Xu, C. (2012). MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factor-retinoblastoma protein (E2F-pRb) pathway. J. Biol. Chem. 287, 21686–21698.
MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factor-retinoblastoma protein (E2F-pRb) pathway.Crossref | GoogleScholarGoogle Scholar | 22570483PubMed |

Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233.
MicroRNAs: target recognition and regulatory functions.Crossref | GoogleScholarGoogle Scholar | 19167326PubMed |

Boyerinas, B., Park, S. A., Murmann, A. E., and Peter, M. E. J. E.-r. c. (2010). The role of let-7 in cell differentiation and cancer. Endocr. Relat. Cancer 17, F19–F36.
The role of let-7 in cell differentiation and cancer.Crossref | GoogleScholarGoogle Scholar | 19779035PubMed |

Chou, C. C., Lou, Y. C., Tang, T. K., and Chen, C. (2010). Structure and DNA binding characteristics of the three-Cys(2)His(2) domain of mouse testis zinc finger protein. Proteins 78, 2202–2212.
Structure and DNA binding characteristics of the three-Cys(2)His(2) domain of mouse testis zinc finger protein.Crossref | GoogleScholarGoogle Scholar | 20544958PubMed |

Clarke, C., Henry, M., Doolan, P., Kelly, S., Aherne, S., Sanchez, N., Kelly, P., Kinsella, P., Breen, L., Madden, S. F., Zhang, L., Leonard, M., Clynes, M., Meleady, P., and Barron, N. (2012). Integrated miRNA, mRNA and protein expression analysis reveals the role of post-transcriptional regulation in controlling CHO cell growth rate. BMC Genomics 13, 656.
Integrated miRNA, mRNA and protein expression analysis reveals the role of post-transcriptional regulation in controlling CHO cell growth rate.Crossref | GoogleScholarGoogle Scholar | 23170974PubMed |

De Rensis, F., Lopez-Gatius, F., García-Ispierto, I., Morini, G., and Scaramuzzi, R. (2017). Causes of declining fertility in dairy cows during the warm season. Theriogenology 91, 145–153.
Causes of declining fertility in dairy cows during the warm season.Crossref | GoogleScholarGoogle Scholar | 28215679PubMed |

Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., and Marks, D. S. (2003). MicroRNA targets in Drosophila. Genome Biol. 5, R1.
MicroRNA targets in Drosophila.Crossref | GoogleScholarGoogle Scholar | 14709173PubMed |

Ensminger, M. E. (1991) ‘Horses and Tack’. (Turn-The-Page Books: Seattle.)

Friedlander, M. R., Mackowiak, S. D., Li, N., Chen, W., and Rajewsky, N. (2012). miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40, 37–52.
miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades.Crossref | GoogleScholarGoogle Scholar | 21911355PubMed |

Fu, J. F., Hsu, H. C., and Shih, L. Y. (2005). MLL is fused to EBI (MAPREI), which encodes a microtubule-associated protein, in a patient with acute lymphoblastic leukemia. Genes Chromosomes Cancer 43, 206–210.
MLL is fused to EBI (MAPREI), which encodes a microtubule-associated protein, in a patient with acute lymphoblastic leukemia.Crossref | GoogleScholarGoogle Scholar | 15751040PubMed |

Girard, A., Sachidanandam, R., Hannon, G. J., and Carmell, M. A. (2006). A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199–202.
A germline-specific class of small RNAs binds mammalian Piwi proteins.Crossref | GoogleScholarGoogle Scholar | 16751776PubMed |

Guan, Y., and Martin, G. B. (2017). Cellular and molecular responses of adult testis to changes in nutrition: novel insights from the sheep model. Reproduction 154, R133–R141.
Cellular and molecular responses of adult testis to changes in nutrition: novel insights from the sheep model.Crossref | GoogleScholarGoogle Scholar | 28982938PubMed |

Guan, Y., Liang, G., Hawken, P. A., Malecki, I. A., Cozens, G., Vercoe, P. E., Martin, G. B., and le Guan, L. (2015). Roles of small RNAs in the effects of nutrition on apoptosis and spermatogenesis in the adult testis. Sci. Rep. 5, 10372.
Roles of small RNAs in the effects of nutrition on apoptosis and spermatogenesis in the adult testis.Crossref | GoogleScholarGoogle Scholar | 25996545PubMed |

Hamdi, S. A., Nassif, O. I., and Ardawi, M. S. (1997). Effect of marginal or severe dietary zinc deficiency on testicular development and functions of the rat. Arch. Androl. 38, 243–253.
Effect of marginal or severe dietary zinc deficiency on testicular development and functions of the rat.Crossref | GoogleScholarGoogle Scholar | 9140621PubMed |

Hayashi, K., Chuva de Sousa Lopes, S. M., Kaneda, M., Tang, F., Hajkova, P., Lao, K., O’Carroll, D., Das, P. P., Tarakhovsky, A., Miska, E. A., and Surani, M. A. (2008). MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 3, e1738.
MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 18665239PubMed |

Hu, Z., Shen, W. J., Cortez, Y., Tang, X., Liu, L. F., Kraemer, F., and Azhar, S. (2013). Hormonal regulation of microRNA expression in steroid producing cells of the ovary, testis and adrenal gland. PLoS One 8, e78040.
Hormonal regulation of microRNA expression in steroid producing cells of the ovary, testis and adrenal gland.Crossref | GoogleScholarGoogle Scholar | 24376717PubMed |

Huang, J., Li, Q., Hou, Q., Wang, C., Li, J., Li, R., Wang, L., Sun, T., Hang, S., Gao, Y., Hou, M., and Zhong, J. (2011). Solexa sequencing of novel and differentially expressed microRNAs in testicular and ovarian tissues in Holstein cattle. Int. J. Biol. Sci. 7, 1016–1026.
Solexa sequencing of novel and differentially expressed microRNAs in testicular and ovarian tissues in Holstein cattle.Crossref | GoogleScholarGoogle Scholar | 21912509PubMed |

Johnson, L., Varner, D. D., and Jr, T. D. (1991). Effect of age and season on the establishment of spermatogenesis in the horse. J. Reprod. Fertil. Suppl. 44, 87.
| 1795306PubMed |

Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., and Yamanishi, Y. (2007). KEGG for linking genomes to life and the environment. Nucleic Acids Research 36, D480–D484.
KEGG for linking genomes to life and the environment.Crossref | GoogleScholarGoogle Scholar | 18077471PubMed |

Komada, M., McLean, D., Griswold, M., Russell, L., and Soriano, P. (2000). E-MAP-115, encoding a microtubule-associated protein, is a retinoic acid-inducible gene required for spermatogenesis. Genes Dev. 14, 1332–1342.
| 10837026PubMed |

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25.
Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.Crossref | GoogleScholarGoogle Scholar | 19261174PubMed |

Lau, N. C., Seto, A. G., Jinkuk, K., Satomi, K. M., Toru, N., Bartel, D. P., and Kingston, R. E. (2006). Characterization of the piRNA complex from rat testes. Science 313, 363–367.
Characterization of the piRNA complex from rat testes.Crossref | GoogleScholarGoogle Scholar | 16778019PubMed |

Li, Y., Li, J., Fang, C., Shi, L., Tan, J., Xiong, Y., Fan, B., and Li, C. (2016). Genome-wide differential expression of genes and small RNAs in testis of two different porcine breeds and at two different ages. Sci. Rep. 6, 26852.
Genome-wide differential expression of genes and small RNAs in testis of two different porcine breeds and at two different ages.Crossref | GoogleScholarGoogle Scholar | 27229484PubMed |

Li, B., He, X., Zhao, Y., Bai, D., Bou, G., Zhang, X., Su, S., Dao, L., Liu, R., Wang, Y., and Manglai, D. (2019). Identification of piRNAs and piRNA clusters in the testes of the Mongolian horse. Sci. Rep. 9, 5022.
Identification of piRNAs and piRNA clusters in the testes of the Mongolian horse.Crossref | GoogleScholarGoogle Scholar | 30903011PubMed |

Lian, C., Sun, B., Niu, S., Yang, R., Liu, B., Lu, C., Meng, J., Qiu, Z., Zhang, L., and Zhao, Z. (2012). A comparative profile of the microRNA transcriptome in immature and mature porcine testes using Solexa deep sequencing. FEBS J. 279, 964–975.
A comparative profile of the microRNA transcriptome in immature and mature porcine testes using Solexa deep sequencing.Crossref | GoogleScholarGoogle Scholar | 22240065PubMed |

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Crossref | GoogleScholarGoogle Scholar | 25516281PubMed |

Mao, X., Cai, T., Olyarchuk, J. G., and Wei, L. (2005). Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21, 3787–3793.
Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary.Crossref | GoogleScholarGoogle Scholar | 15817693PubMed |

Mishima, T., Takizawa, T., Luo, S. S., Ishibashi, O., Kawahigashi, Y., Mizuguchi, Y., Ishikawa, T., Mori, M., Kanda, T., Goto, T., and Takizawa, T. (2008). MicroRNA (miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary. Reproduction 136, 811–822.
MicroRNA (miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary.Crossref | GoogleScholarGoogle Scholar | 18772262PubMed |

Miyai, T., Hojyo, S., Ikawa, T., Kawamura, M., Irié, T., Ogura, H., Hijikata, A., Bin, B.-H., Yasuda, T., Kitamura, H., Nakayama, M., Ohara, O., Yoshida, H., Koseki, H., Mishima, K., and Fukada, T. (2014). Zinc transporter SLC39A10/ZIP10 facilitates antiapoptotic signaling during early B-cell development. Proc. Natl. Acad. Sci. USA 111, 11780–11785.
Zinc transporter SLC39A10/ZIP10 facilitates antiapoptotic signaling during early B-cell development.Crossref | GoogleScholarGoogle Scholar | 25074913PubMed |

Naden, J., Amann, R. P., and Squires, E. L. (1990). Testicular growth, hormone concentrations, seminal characteristics and sexual behaviour in stallions. J. Reprod. Fertil. 88, 167.
Testicular growth, hormone concentrations, seminal characteristics and sexual behaviour in stallions.Crossref | GoogleScholarGoogle Scholar | 2107299PubMed |

Niu, Z., Goodyear, S. M., Rao, S., Wu, X., Tobias, J. W., Avarbock, M. R., and Brinster, R. L. (2011). MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. USA 108, 12740–12745.
MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 21768389PubMed |

Noveski, P., Popovska-Jankovic, K., Kubelka-Sabit, K., Filipovski, V., Lazarevski, S., Plaseski, T., and Plaseska-Karanfilska, D. (2016). MicroRNA expression profiles in testicular biopsies of patients with impaired spermatogenesis. Andrology 4, 1020–1027.
MicroRNA expression profiles in testicular biopsies of patients with impaired spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 27566408PubMed |

Oteiza, P. I., Adonaylo, V., and Keen, C. (1999). Cadmium-induced testes oxidative damage in rats can be influenced by dietary zinc intake. Toxicology 137, 13–22.
Cadmium-induced testes oxidative damage in rats can be influenced by dietary zinc intake.Crossref | GoogleScholarGoogle Scholar | 10513996PubMed |

Oztürk, A., Baltaci, A., Bediz, C. S., Mogulkoc, R., and Güngör, S. (2003). Effects of zinc and melatonin deficiency on testicular tissue of rats. Biol. Trace Elem. Res. 96, 255–262.
Effects of zinc and melatonin deficiency on testicular tissue of rats.Crossref | GoogleScholarGoogle Scholar | 14716105PubMed |

Panneerdoss, S., Chang, Y. F., Buddavarapu, K. C., Chen, H. I., Shetty, G., Wang, H., Chen, Y., Kumar, T. R., and Rao, M. K. (2012). Androgen-responsive microRNAs in mouse Sertoli cells. PLoS One 7, e41146.
Androgen-responsive microRNAs in mouse Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 23285024PubMed |

Parelho, C., Bernardo, F., Camarinho, R., Rodrigues, A. S., and Garcia, P. (2016). Testicular damage and farming environments – an integrative ecotoxicological link. Chemosphere 155, 135–141.
Testicular damage and farming environments – an integrative ecotoxicological link.Crossref | GoogleScholarGoogle Scholar | 27108371PubMed |

Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., Maller, B., Hayward, D. C., Ball, E. E., Degnan, B., Müller, P., Spring, J., Srinivasan, A., Fishman, M., Finnerty, J., Corbo, J., Levine, M., Leahy, P., and Davidson, E. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89.
Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA.Crossref | GoogleScholarGoogle Scholar | 11081512PubMed |

Peri, A., and Serio, M. J. J. E. I. (2000). The CREM system in human spermatogenesis. J. Endocrinol. Invest. 23, 578–583.
The CREM system in human spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 11079452PubMed |

Song, N., Liu, J., An, S., Nishino, T., Hishikawa, Y., and Koji, T. (2011). Immunohistochemical analysis of histone H3 modifications in germ cells during mouse spermatogenesis. Acta Histochem. Cytochem. 44, 183–190.
Immunohistochemical analysis of histone H3 modifications in germ cells during mouse spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 21927517PubMed |

Takasaki, N., Tachibana, K., Ogasawara, S., Matsuzaki, H., Hagiuda, J., Ishikawa, H., Mochida, K., Inoue, K., Ogonuki, N., Ogura, A., Noce, T., Ito, C., Toshimori, K., and Narimatsu, H. (2014). A heterozygous mutation of GALNTL5 affects male infertility with impairment of sperm motility. Proc. Natl. Acad. Sci. USA 111, 1120–1125.
A heterozygous mutation of GALNTL5 affects male infertility with impairment of sperm motility.Crossref | GoogleScholarGoogle Scholar | 24398516PubMed |

Tong, M. H., Mitchell, D., Evanoff, R., and Griswold, M. (2011). Expression of Mirlet7 family microRNAs in response to retinoic acid-induced spermatogonial differentiation in mice. Biol. Reprod. 85, 189–197.
Expression of Mirlet7 family microRNAs in response to retinoic acid-induced spermatogonial differentiation in mice.Crossref | GoogleScholarGoogle Scholar | 21430230PubMed |

Torley, K. J., da Silveira, J. C., Smith, P., Anthony, R. V., Veeramachaneni, D. N., Winger, Q. A., and Bouma, G. J. (2011). Expression of miRNAs in ovine fetal gonads: potential role in gonadal differentiation. Reprod. Biol. Endocrinol. 9, 2.
Expression of miRNAs in ovine fetal gonads: potential role in gonadal differentiation.Crossref | GoogleScholarGoogle Scholar | 21223560PubMed |

Weinbauer, G. F., Behr, R., Bergmann, M., and Nieschlag, E. (1998). Testicular cAMP responsive element modulator (CREM) protein is expressed in round spermatids but is absent or reduced in men with round spermatid maturation arrest. Mol. Hum. Reprod. 4, 9–15.
Testicular cAMP responsive element modulator (CREM) protein is expressed in round spermatids but is absent or reduced in men with round spermatid maturation arrest.Crossref | GoogleScholarGoogle Scholar | 9510006PubMed |

Wen, M., Shen, Y., Shi, S., and Tang, T. (2012). miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinformatics 13, 140.
miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments.Crossref | GoogleScholarGoogle Scholar | 22720726PubMed |

Winters, B. R., and Walsh, T. J. (2014). The epidemiology of male infertility. Urol. Clin. North Am. 41, 195–204.
The epidemiology of male infertility.Crossref | GoogleScholarGoogle Scholar | 24286777PubMed |

Wu, J., Zhu, H., Song, W., Li, M., Liu, C., Li, N., Tang, F., Mu, H., Liao, M., Li, X., Guan, W., Li, X., and Hua, J. (2014). Identification of conservative microRNAs in Saanen dairy goat testis through deep sequencing. Reprod. Domest. Anim. 49, 32–40.
Identification of conservative microRNAs in Saanen dairy goat testis through deep sequencing.Crossref | GoogleScholarGoogle Scholar | 23981187PubMed |

Yang, Q. E., Racicot, K. E., Kaucher, A. V., Oatley, M. J., and Oatley, J. M. (2013). MicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells. Development 140, 280–290.
MicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells.Crossref | GoogleScholarGoogle Scholar | 23221369PubMed |

Young, M. D., Wakeeld, M. J., Smyth, G. K., and Oshlack, A. (2010). ‘Goseq: Gene Ontology Testing for RNA-seq datasets.’

Yu, Z., Raabe, T., and Hecht, N. B. (2005). MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol. Reprod. 73, 427–433.
MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage.Crossref | GoogleScholarGoogle Scholar | 15901636PubMed |

Zhang, J., Liu, Q., Zhang, W., Li, J., Li, Z., Tang, Z., Li, Y., Han, C., Hall, S. H., and Zhang, Y. (2010). Comparative profiling of genes and miRNAs expressed in the newborn, young adult, and aged human epididymides. Acta Biochim. Biophys. Sin. (Shanghai) 42, 145–153.
Comparative profiling of genes and miRNAs expressed in the newborn, young adult, and aged human epididymides.Crossref | GoogleScholarGoogle Scholar | 20119626PubMed |

Zheng, K., Wu, X., Kaestner, K. H., and Wang, P. (2009). The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse. BMC Dev. Biol. 9, 38.
The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse.Crossref | GoogleScholarGoogle Scholar | 19563657PubMed |

Zhong, X., Li, N., Liang, S., Huang, Q., Coukos, G., and Zhang, L. (2010). Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells. J. Biol. Chem. 285, 41961–41971.
Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells.Crossref | GoogleScholarGoogle Scholar | 20947512PubMed |

Zhou, H., Liu, L. H., Zhang, H., Lei, Z., and Lan, Z. J. (2010a). Expression of zinc finger protein 105 in the testis and its role in male fertility. Mol. Reprod. Dev. 77, 511–520.
Expression of zinc finger protein 105 in the testis and its role in male fertility.Crossref | GoogleScholarGoogle Scholar | 20186958PubMed |

Zhou, L., Chen, J., Li, Z., Li, X., Hu, X., Huang, Y., Zhao, X., Liang, C., Wang, Y., Sun, L., Shi, M., Xu, X., Shen, F., Chen, M., Han, Z., Peng, Z., Zhai, Q., Chen, J., Zhang, Z., Yang, R., Ye, J., Guan, Z., Yang, H., Gui, Y., Wang, J., Cai, Z., and Zhang, X. (2010b). Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS One 5, e15224.
Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma.Crossref | GoogleScholarGoogle Scholar | 21253009PubMed |