Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Regeneration of testis tissue after ectopic implantation of porcine testis cell aggregates in mice: improved consistency of outcomes and in situ monitoring

Awang Hazmi Awang-Junaidi A B , Jaswant Singh A and Ali Honaramooz https://orcid.org/0000-0002-3194-9468 A C
+ Author Affiliations
- Author Affiliations

A Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4 Canada.

B Present address: Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.

C Corresponding author. Email: ali.honaramooz@usask.ca

Reproduction, Fertility and Development 32(6) 594-609 https://doi.org/10.1071/RD19043
Submitted: 28 January 2019  Accepted: 8 October 2019   Published: 13 February 2020

Abstract

Ectopic implantation of donor testis cell aggregates in recipient mice results in de novo formation or regeneration of testis tissue and, as such, provides a unique in vivo model for the study of testis development. However, currently the results are inconsistent and the efficiency of the model remains low. This study was designed to: (1) examine several factors that can potentially improve the consistency and efficiency of this model and (2) explore the use of ultrasound biomicroscopy (UBM) for the non-invasive in vivo evaluation of implants. Testis cell aggregates, containing ~40% gonocytes, from 1-week-old donor piglets were implanted under the back skin of immunodeficient mice through skin incisions using gel matrices or through subcutaneous injection without using gel matrices. The addition of gel matrices led to inconsistent tissue development; gelatin had the greatest development, followed by collagen, whereas agarose resulted in poor development. The results also depended on the implanted cell numbers since implants with 100 × 106 cells were larger than those with 50 × 106 cells. The injection approach for cell implantation was less invasive and resulted in more consistent and efficient testis tissue development. UBM provided promising results as a means of non-invasive monitoring of implants.

Additional keywords: de novo morphogenesis, gonocytes, testis cell implantation, testis development.


References

Abbasi, S., and Honaramooz, A. (2010). Effects of recipient mouse strain, sex and gonadal status on the outcome of testis tissue xenografting. Reprod. Fertil. Dev. 22, 1279–1286.
Effects of recipient mouse strain, sex and gonadal status on the outcome of testis tissue xenografting.Crossref | GoogleScholarGoogle Scholar | 20883654PubMed |

Abbasi, S., and Honaramooz, A. (2011). The number of grafted fragments affects the outcome of testis tissue xenografting from piglets into recipient mice. Vet. Med. Int. 2011, 1–7.
The number of grafted fragments affects the outcome of testis tissue xenografting from piglets into recipient mice.Crossref | GoogleScholarGoogle Scholar |

Arregui, L., Rathi, R., Megee, S. O., Honaramooz, A., Gomendio, M., Roldan, E. R. S., and Dobrinski, I. (2008a). Xenografting of sheep testis tissue and isolated cells as a model for preservation of genetic material from endangered ungulates. Reproduction 136, 85–93.
Xenografting of sheep testis tissue and isolated cells as a model for preservation of genetic material from endangered ungulates.Crossref | GoogleScholarGoogle Scholar | 18390693PubMed |

Arregui, L., Rathi, R., Zeng, W., Honaramooz, A., Gomendio, M., Roldan, E. R. S., and Dobrinski, I. (2008b). Xenografting of adult mammalian testis tissue. Anim. Reprod. Sci. 106, 65–76.
Xenografting of adult mammalian testis tissue.Crossref | GoogleScholarGoogle Scholar | 17512146PubMed |

Arregui, L., Rathi, R., Modelski, M., Zeng, W., Roldan, E. R. S., and Dobrinski, I. (2012). Suppression of spermatogenesis before grafting increases survival and supports resurgence of spermatogenesis in adult mouse testis. Fertil. Steril. 97, 1422–1429.
Suppression of spermatogenesis before grafting increases survival and supports resurgence of spermatogenesis in adult mouse testis.Crossref | GoogleScholarGoogle Scholar | 22464084PubMed |

Awang-Junaidi, A. H., and Honaramooz, A. (2018). Optimization of culture conditions for short-term maintenance, proliferation, and colony formation of porcine gonocytes. J. Anim. Sci. Biotechnol. 9, 8.
Optimization of culture conditions for short-term maintenance, proliferation, and colony formation of porcine gonocytes.Crossref | GoogleScholarGoogle Scholar | 29372053PubMed |

Campos-Junior, P. H. A., Costa, G. M. J., Avelar, G. F., Lacerda, S. M. S. N., Da Costa, N. N., Ohashi, O. M., Miranda, M. D. S., Barcelos, L. S., Jorge, É. C., Guimarães, D. A., and De França, L. R. (2014). Derivation of sperm from xenografted testis cells and tissues of the peccary (Tayassu tajacu). Reproduction 147, 291–299.
Derivation of sperm from xenografted testis cells and tissues of the peccary (Tayassu tajacu).Crossref | GoogleScholarGoogle Scholar |

Cervantes, M. P., Singh, J., Palomino, J. M., and Adams, G. P. (2013). Surgical translocation and ultrasound bio-microscopy of the ovaries in rabbits. Anim. Reprod. Sci. 138, 133–141.
Surgical translocation and ultrasound bio-microscopy of the ovaries in rabbits.Crossref | GoogleScholarGoogle Scholar | 23517857PubMed |

Dada, T., Gadia, R., Sharma, A., Ichhpujani, P., Bali, S. J., Bhartiya, S., and Panda, A. (2011). Ultrasound biomicroscopy in glaucoma. Surv. Ophthalmol. 56, 433–450.
Ultrasound biomicroscopy in glaucoma.Crossref | GoogleScholarGoogle Scholar | 21783220PubMed |

Dores, C., and Dobrinski, I. (2014). De novo morphogenesis of testis tissue: an improved bioassay to investigate the role of VEGF165 during testis formation. Reproduction 148, 109–117.
De novo morphogenesis of testis tissue: an improved bioassay to investigate the role of VEGF165 during testis formation.Crossref | GoogleScholarGoogle Scholar | 24803491PubMed |

Dufour, J. M., Rajotte, R. V., and Korbutt, G. S. (2002). Development of an in vivo model to study testicular morphogenesis. J. Androl. 23, 635–644.
| 12185097PubMed |

Fan, H., Zhang, C., Li, J., Bi, L., Qin, L., Wu, H., and Hu, Y. (2008). Gelatin microspheres containing TGF-beta3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture. Biomacromolecules 9, 927–934.
Gelatin microspheres containing TGF-beta3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture.Crossref | GoogleScholarGoogle Scholar | 18269244PubMed |

Ferrara, N. (2000). Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog. Horm. Res. 55, 15–35.
| 11036931PubMed |

Foster, F. S. (2003). In vivo imaging of embryonic development in the mouse eye by ultrasound biomicroscopy. Invest. Ophthalmol. Vis. Sci. 44, 2361–2366.
In vivo imaging of embryonic development in the mouse eye by ultrasound biomicroscopy.Crossref | GoogleScholarGoogle Scholar | 12766031PubMed |

Gasperini, L., Mano, J. F., and Reis, R. L. (2014). Natural polymers for the microencapsulation of cells. J. R. Soc. Interface 11, 20140817.
Natural polymers for the microencapsulation of cells.Crossref | GoogleScholarGoogle Scholar | 25232055PubMed |

Gassei, K., Schlatt, S., and Ehmcke, J. (2006). De novo morphogenesis of seminiferous tubules from dissociated immature rat testicular cells in xenografts. J. Androl. 27, 611–618.
De novo morphogenesis of seminiferous tubules from dissociated immature rat testicular cells in xenografts.Crossref | GoogleScholarGoogle Scholar | 16582408PubMed |

Goossens, E., Geens, M., De Block, G., and Tournaye, H. (2008). Spermatogonial survival in long-term human prepubertal xenografts. Fertil. Steril. 90, 2019–2022.
Spermatogonial survival in long-term human prepubertal xenografts.Crossref | GoogleScholarGoogle Scholar | 18439593PubMed |

Greco, A., Di Benedetto, A., Howard, C. M., Kelly, S., Nande, R., Dementieva, Y., Miranda, M., Brunetti, A., Salvatore, M., Claudio, L., Sarkar, D., Dent, P., Curiel, D. T., Fisher, P. B., and Claudio, P. P. (2010). Eradication of therapy-resistant human prostate tumors using an ultrasound-guided site-specific cancer terminator virus delivery approach. Mol. Ther. 18, 295–306.
Eradication of therapy-resistant human prostate tumors using an ultrasound-guided site-specific cancer terminator virus delivery approach.Crossref | GoogleScholarGoogle Scholar | 19888195PubMed |

Hinton, R. B., Alfieri, C. M., Witt, S. A., Glascock, B. J., Khoury, P. R., Benson, D. W., and Yutzey, K. E. (2008). Mouse heart valve structure and function: echocardiographic and morphometric analyses from the fetus through the aged adult. Am. J. Physiol. Heart Circ. Physiol. 294, H2480–H2488.
Mouse heart valve structure and function: echocardiographic and morphometric analyses from the fetus through the aged adult.Crossref | GoogleScholarGoogle Scholar | 18390820PubMed |

Honaramooz, A., Megee, S. O., and Dobrinski, I. (2002a). Germ cell transplantation in pigs. Biol. Reprod. 66, 21–28.
Germ cell transplantation in pigs.Crossref | GoogleScholarGoogle Scholar | 11751259PubMed |

Honaramooz, A., Snedaker, A., Boiani, M., Schöler, H., Dobrinski, I., and Schlatt, S. (2002b). Sperm from neonatal mammalian testes grafted in mice. Nature 418, 778–781.
Sperm from neonatal mammalian testes grafted in mice.Crossref | GoogleScholarGoogle Scholar | 12181567PubMed |

Honaramooz, A., Behboodi, E., Blash, S., Megee, S. O., and Dobrinski, I. (2003). Germ cell transplantation in goats. Mol. Reprod. Dev. 64, 422–428.
Germ cell transplantation in goats.Crossref | GoogleScholarGoogle Scholar | 12589654PubMed |

Honaramooz, A., Li, M.-W., Penedo, M. C. T., Meyers, S., and Dobrinski, I. (2004). Accelerated maturation of primate testis by xenografting into mice. Biol. Reprod. 70, 1500–1503.
Accelerated maturation of primate testis by xenografting into mice.Crossref | GoogleScholarGoogle Scholar | 14736818PubMed |

Honaramooz, A., Megee, S. O., Rathi, R., and Dobrinski, I. (2007). Building a testis: formation of functional testis tissue after transplantation of isolated porcine (Sus scrofa) testis cells. Biol. Reprod. 76, 43–47.
Building a testis: formation of functional testis tissue after transplantation of isolated porcine (Sus scrofa) testis cells.Crossref | GoogleScholarGoogle Scholar | 17005941PubMed |

Hughes, I. A. (2008). Disorders of sex development: a new definition and classification. Best Pract. Res. Clin. Endocrinol. Metab. 22, 119–134.
Disorders of sex development: a new definition and classification.Crossref | GoogleScholarGoogle Scholar | 18279784PubMed |

Ito, M., Hiramatsu, H., Kobayashi, K., Suzue, K., Kawahata, M., Hioki, K., Ueyama, Y., Koyanagi, Y., Sugamura, K., Tsuji, K., Heike, T., and Nakahata, T. (2002). NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100, 3175–3182.
NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells.Crossref | GoogleScholarGoogle Scholar | 12384415PubMed |

Kim, Y., Selvaraj, V., Pukazhenthi, B., and Travis, A. J. (2007). Effect of donor age on success of spermatogenesis in feline testis xenografts. Reprod. Fertil. Dev. 19, 869–876.
Effect of donor age on success of spermatogenesis in feline testis xenografts.Crossref | GoogleScholarGoogle Scholar | 17897590PubMed |

Kita, K., Watanabe, T., Ohsaka, K., Hayashi, H., Kubota, Y., Nagashima, Y., Aoki, I., Taniguchi, H., Noce, T., Inoue, K., Miki, H., Ogonuki, N., Tanaka, H., Ogura, A., and Ogawa, T. (2007). Production of functional spermatids from mouse germline stem cells in ectopically reconstituted seminiferous tubules. Biol. Reprod. 76, 211–217.
Production of functional spermatids from mouse germline stem cells in ectopically reconstituted seminiferous tubules.Crossref | GoogleScholarGoogle Scholar | 17065598PubMed |

Liu, Z. C., and Chang, T. M. S. (2010). Artificial cell microencapsulated stem cells in regenerative medicine, tissue engineering and cell therapy. Adv. Exp. Med. Biol. 670, 68–79.
Artificial cell microencapsulated stem cells in regenerative medicine, tissue engineering and cell therapy.Crossref | GoogleScholarGoogle Scholar | 20384219PubMed |

Lund, A. W., Bush, J. A., Plopper, G. E., and Stegemann, J. P. (2008). Osteogenic differentiation of mesenchymal stem cells in defined protein beads. J. Biomed. Mater. Res. B Appl. Biomater. 87, 213–221.
Osteogenic differentiation of mesenchymal stem cells in defined protein beads.Crossref | GoogleScholarGoogle Scholar | 18431753PubMed |

Mancini, M., Vergara, E., Salvatore, G., Greco, A., Troncone, G., Affuso, A., Liuzzi, R., Salerno, P., Di Santolo, M. S., Santoro, M., Brunetti, A., and Salvatore, M. (2009). Morphological ultrasound microimaging of thyroid in living mice. Endocrinology 150, 4810–4815.
Morphological ultrasound microimaging of thyroid in living mice.Crossref | GoogleScholarGoogle Scholar | 19589864PubMed |

Manning, H. C., Merchant, N. B., Foutch, A. C., Virostko, J. M., Wyatt, S. K., Shah, C., McKinley, E. T., Xie, J., Mutic, N. J., Washington, M. K., LaFleur, B., Tantawy, M. N., Peterson, T. E., Ansari, M. S., Baldwin, R. M., Rothenberg, M. L., Bornhop, D. J., Gore, J. C., and Coffey, R. J. (2008). Molecular imaging of therapeutic response to epidermal growth factor receptor blockade in colorectal cancer. Clin. Cancer Res. 14, 7413–7422.
Molecular imaging of therapeutic response to epidermal growth factor receptor blockade in colorectal cancer.Crossref | GoogleScholarGoogle Scholar | 19010858PubMed |

Mannino, G., Abdolrahimzadeh, B., Calafiore, S., Anselmi, G., Mannino, C., and Lambiase, A. (2016). A review of the role of ultrasound biomicroscopy in glaucoma associated with rare diseases of the anterior segment. Clin. Ophthalmol. 10, 1453–1459.
A review of the role of ultrasound biomicroscopy in glaucoma associated with rare diseases of the anterior segment.Crossref | GoogleScholarGoogle Scholar | 27536058PubMed |

Mircea, C. N., Lujan, M. E., Jaiswal, R. S., Singh, J., Adams, G. P., and Pierson, R. A. (2009). Ovarian imaging in the mouse using ultrasound biomicroscopy (UBM): a validation study. Reprod. Fertil. Dev. 21, 579–586.
Ovarian imaging in the mouse using ultrasound biomicroscopy (UBM): a validation study.Crossref | GoogleScholarGoogle Scholar | 19383264PubMed |

Murua, A., Portero, A., Orive, G., Hernández, R. M., de Castro, M., and Pedraz, J. L. (2008). Cell microencapsulation technology: towards clinical application. J. Control. Release 132, 76–83.
Cell microencapsulation technology: towards clinical application.Crossref | GoogleScholarGoogle Scholar | 18789985PubMed |

Neufeld, G., Cohen, T., Gengrinovitch, S., and Poltorak, Z. (1999). Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13, 9–22.
Vascular endothelial growth factor (VEGF) and its receptors.Crossref | GoogleScholarGoogle Scholar | 9872925PubMed |

Nicodemus, G. D., and Bryant, S. (2008). Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 14, 149–165.
Cell encapsulation in biodegradable hydrogels for tissue engineering applications.Crossref | GoogleScholarGoogle Scholar | 18498217PubMed |

Oatley, J. M., Reeves, J. J., and McLean, D. J. (2005). Establishment of spermatogenesis in neonatal bovine testicular tissue following ectopic xenografting varies with donor age. Biol. Reprod. 72, 358–364.
Establishment of spermatogenesis in neonatal bovine testicular tissue following ectopic xenografting varies with donor age.Crossref | GoogleScholarGoogle Scholar | 15470000PubMed |

Paris, M. C. J., and Schlatt, S. (2007). Ovarian and testicular tissue xenografting: its potential for germline preservation of companion animals, non-domestic and endangered species. Reprod. Fertil. Dev. 19, 771–782.
Ovarian and testicular tissue xenografting: its potential for germline preservation of companion animals, non-domestic and endangered species.Crossref | GoogleScholarGoogle Scholar |

Paris, M. C. J., Snow, M., Cox, S. L., and Shaw, J. M. (2004). Xenotransplantation: a tool for reproductive biology and animal conservation? Theriogenology 61, 277–291.
Xenotransplantation: a tool for reproductive biology and animal conservation?Crossref | GoogleScholarGoogle Scholar |

Park, I. S., Kim, S.-H., Kim, Y. H., Kim, I. H., and Kim, S. H. (2009). A collagen/smooth muscle cell-incorporated elastic scaffold for tissue-engineered vascular grafts. J. Biomater. Sci. Polym. Ed. 20, 1645–1660.
A collagen/smooth muscle cell-incorporated elastic scaffold for tissue-engineered vascular grafts.Crossref | GoogleScholarGoogle Scholar | 19619403PubMed |

Rathi, R., Honaramooz, A., Zeng, W., Turner, R., and Dobrinski, I. (2006). Germ cell development in equine testis tissue xenografted into mice. Reproduction 131, 1091–1098.
Germ cell development in equine testis tissue xenografted into mice.Crossref | GoogleScholarGoogle Scholar | 16735548PubMed |

Rathi, R., Zeng, W., Megee, S., Conley, A., Meyers, S., and Dobrinski, I. (2008). Maturation of testicular tissue from infant monkeys after xenografting into mice. Endocrinology 149, 5288–5296.
Maturation of testicular tissue from infant monkeys after xenografting into mice.Crossref | GoogleScholarGoogle Scholar | 18566126PubMed |

Rodriguez-Sosa, J. R., and Dobrinski, I. (2009). Recent developments in testis tissue xenografting. Reproduction 138, 187–194.
Recent developments in testis tissue xenografting.Crossref | GoogleScholarGoogle Scholar | 19372227PubMed |

Schlatt, S., Kim, S. S., and Gosden, R. (2002). Spermatogenesis and steroidogenesis in mouse, hamster and monkey testicular tissue after cryopreservation and heterotopic grafting to castrated hosts. Reproduction 124, 339–346.
Spermatogenesis and steroidogenesis in mouse, hamster and monkey testicular tissue after cryopreservation and heterotopic grafting to castrated hosts.Crossref | GoogleScholarGoogle Scholar | 12201807PubMed |

Schlatt, S., Honaramooz, A., Boiani, M., Schöler, H. R., and Dobrinski, I. (2003). Progeny from sperm obtained after ectopic grafting of neonatal mouse testes. Biol. Reprod. 68, 2331–2335.
Progeny from sperm obtained after ectopic grafting of neonatal mouse testes.Crossref | GoogleScholarGoogle Scholar | 12606381PubMed |

Schmidt, J. A., de Avila, J. M., and McLean, D. J. (2006). Grafting period and donor age affect the potential for spermatogenesis in bovine ectopic testis xenografts. Biol. Reprod. 75, 160–166.
Grafting period and donor age affect the potential for spermatogenesis in bovine ectopic testis xenografts.Crossref | GoogleScholarGoogle Scholar | 16672721PubMed |

Schöne, M., Männicke, N., Somerson, J. S., Marquaß, B., Henkelmann, R., Aigner, T., Raum, K., and Schulz, R. M. (2016). 3D ultrasound biomicroscopy for assessment of cartilage repair tissue: volumetric characterisation and correlation to established classification systems. Eur. Cell. Mater. 31, 119–135.
3D ultrasound biomicroscopy for assessment of cartilage repair tissue: volumetric characterisation and correlation to established classification systems.Crossref | GoogleScholarGoogle Scholar | 26853622PubMed |

Shen, Z. P., Brayman, A. A., Chen, L., and Miao, C. H. (2008). Ultrasound with microbubbles enhances gene expression of plasmid DNA in the liver via intraportal delivery. Gene Ther. 15, 1147–1155.
Ultrasound with microbubbles enhances gene expression of plasmid DNA in the liver via intraportal delivery.Crossref | GoogleScholarGoogle Scholar | 18385766PubMed |

Shinohara, T., Inoue, K., Ogonuki, N., Kanatsu-Shinohara, M., Miki, H., Nakata, K., Kurome, M., Nagashima, H., Toyokuni, S., Kogishi, K., Honjo, T., and Ogura, A. (2002). Birth of offspring following transplantation of cryopreserved immature testicular pieces and in-vitro microinsemination. Hum. Reprod. 17, 3039–3045.
Birth of offspring following transplantation of cryopreserved immature testicular pieces and in-vitro microinsemination.Crossref | GoogleScholarGoogle Scholar | 12456600PubMed |

Shweiki, D., Itin, A., Soffer, D., and Keshet, E. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845.
Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis.Crossref | GoogleScholarGoogle Scholar | 1279431PubMed |

Skakkebaek, N. E., Rajpert-De Meyts, E., and Main, K. M. (2001). Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum. Reprod. 16, 972–978.
Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects.Crossref | GoogleScholarGoogle Scholar | 11331648PubMed |

Springer, M. L., Sievers, R. E., Viswanathan, M. N., Yee, M. S., Foster, E., Grossman, W., and Yeghiazarians, Y. (2005). Closed-chest cell injections into mouse myocardium guided by high-resolution echocardiography. Am. J. Physiol. Heart Circ. Physiol. 289, H1307–H1314.
Closed-chest cell injections into mouse myocardium guided by high-resolution echocardiography.Crossref | GoogleScholarGoogle Scholar | 15908468PubMed |

Spurney, C. F., Lo, C. W., and Leatherbury, L. (2006). Fetal mouse imaging using echocardiography: a review of current technology. Echocardiography 23, 891–899.
Fetal mouse imaging using echocardiography: a review of current technology.Crossref | GoogleScholarGoogle Scholar | 17069613PubMed |

Töyräs, J., Laasanen, M. S., Saarakkala, S., Lammi, M. J., Rieppo, J., Kurkijärvi, J., Lappalainen, R., and Jurvelin, J. S. (2003). Speed of sound in normal and degenerated bovine articular cartilage. Ultrasound Med. Biol. 29, 447–454.
Speed of sound in normal and degenerated bovine articular cartilage.Crossref | GoogleScholarGoogle Scholar | 12706196PubMed |

Tzouanas, S. N., Ekenseair, A. K., Kasper, F. K., and Mikos, A. G. (2014). Mesenchymal stem cell and gelatin microparticle encapsulation in thermally and chemically gelling injectable hydrogels for tissue engineering. J. Biomed. Mater. Res. A 102, 1222–1230.
Mesenchymal stem cell and gelatin microparticle encapsulation in thermally and chemically gelling injectable hydrogels for tissue engineering.Crossref | GoogleScholarGoogle Scholar | 24458783PubMed |

Watanabe, T., Hayashi, H., Kita, K., Kubota, Y., and Ogawa, T. (2009). Ectopic porcine spermatogenesis in murine subcutis: tissue grafting versus cell-injection methods. Asian J. Androl. 11, 317–323.
Ectopic porcine spermatogenesis in murine subcutis: tissue grafting versus cell-injection methods.Crossref | GoogleScholarGoogle Scholar | 19137001PubMed |

Wohlfahrt-Veje, C., Main, K. M., and Skakkebaek, N. E. (2009). Testicular dysgenesis syndrome: foetal origin of adult reproductive problems. Clin. Endocrinol. 71, 459–465.
Testicular dysgenesis syndrome: foetal origin of adult reproductive problems.Crossref | GoogleScholarGoogle Scholar |

Yang, Y., and Honaramooz, A. (2011). Efficient purification of neonatal porcine gonocytes with Nycodenz and differential plating. Reprod. Fertil. Dev. 23, 496–505.
Efficient purification of neonatal porcine gonocytes with Nycodenz and differential plating.Crossref | GoogleScholarGoogle Scholar | 21426866PubMed |

Yang, Y., Yarahmadi, M., and Honaramooz, A. (2010). Development of novel strategies for the isolation of piglet testis cells with a high proportion of gonocytes. Reprod. Fertil. Dev. 22, 1057–1065.
Development of novel strategies for the isolation of piglet testis cells with a high proportion of gonocytes.Crossref | GoogleScholarGoogle Scholar | 20797343PubMed |

Zhang, Z., Hill, J., Holland, M., Kurihara, Y., and Loveland, K. L. (2008). Bovine Sertoli cells colonize and form tubules in murine hosts following transplantation and grafting procedures. J. Androl. 29, 418–430.
Bovine Sertoli cells colonize and form tubules in murine hosts following transplantation and grafting procedures.Crossref | GoogleScholarGoogle Scholar | 18326509PubMed |