Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Concepts and tools for gene editing

Santiago Josa A B , Davide Seruggia A B C , Almudena Fernández A B and Lluis Montoliu A B D
+ Author Affiliations
- Author Affiliations

A Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain.

B CIBERER, Instituto de Salud Carlos III, 28029 Madrid, Spain.

C Present address: Boston Children’s Hospital, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215-5450 , USA.

D Corresponding author. Email: montoliu@cnb.csic.es

Reproduction, Fertility and Development 29(1) 1-7 https://doi.org/10.1071/RD16396
Published: 2 December 2016

Abstract

Gene editing is a relatively recent concept in the molecular biology field. Traditional genetic modifications in animals relied on a classical toolbox that, aside from some technical improvements and additions, remained unchanged for many years. Classical methods involved direct delivery of DNA sequences into embryos or the use of embryonic stem cells for those few species (mice and rats) where it was possible to establish them. For livestock, the advent of somatic cell nuclear transfer platforms provided alternative, but technically challenging, approaches for the genetic alteration of loci at will. However, the entire landscape changed with the appearance of different classes of genome editors, from initial zinc finger nucleases, to transcription activator-like effector nucleases and, most recently, with the development of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas). Gene editing is currently achieved by CRISPR–Cas-mediated methods, and this technological advancement has boosted our capacity to generate almost any genetically altered animal that can be envisaged.

Additional keywords: genetically modified animals, genome-edited animals, knockin, knockout, transgenic animals.


References

Abudayyeh, O. O., Gootenberg, J. S., Konermann, S., Joung, J., Slaymaker, I. M., Cox, D. B., Shmakov, S., Makarova, K. S., Semenova, E., Minakhin, L., Severinov, K., Regev, A., Lander, E. S., Koonin, E. V., and Zhang, F. (2016). C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573.
C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector.Crossref | GoogleScholarGoogle Scholar |

Basu, S., Aryan, A., Overcash, J. M., Samuel, G. H., Anderson, M. A., Dahlem, T. J., Myles, K. M., and Adelman, Z. N. (2015). Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti. Proc. Natl Acad. Sci. USA 112, 4038–4043.
Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksF2itL8%3D&md5=98ebc65475635d09944ba08e4c52dae4CAS |

Bedell, V. M., Wang, Y., Campbell, J. M., Poshusta, T. L., Starker, C. G., Krug, R. G., Tan, W., Penheiter, S. G., Ma, A. C., Leung, A. Y., Fahrenkrug, S. C., Carlson, D. F., Voytas, D. F., Clark, K. J., Essner, J. J., and Ekker, S. C. (2012). In vivo genome editing using a high-efficiency TALEN system. Nature 491, 114–118.
In vivo genome editing using a high-efficiency TALEN system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlylsr3K&md5=90163a0767c0236bc7a40cd5bea0720cCAS |

Bradley, A., Anastassiadis, K., Ayadi, A., Battey, J. F., Bell, C., Birling, M. C., Bottomley, J., Brown, S. D., Bürger, A., Bult, C. J., Bushell, W., Collins, F. S., Desaintes, C., Doe, B., Economides, A., Eppig, J. T., Finnell, R. H., Fletcher, C., Fray, M., Frendewey, D., Friedel, R. H., Grosveld, F. G., Hansen, J., Hérault, Y., Hicks, G., Hörlein, A., Houghton, R., Hrabé de Angelis, M., Huylebroeck, D., Iyer, V., de Jong, P. J., Kadin, J. A., Kaloff, C., Kennedy, K., Koutsourakis, M., Lloyd, K. C., Marschall, S., Mason, J., McKerlie, C., McLeod, M. P., von Melchner, H., Moore, M., Mujica, A. O., Nagy, A., Nefedov, M., Nutter, L. M., Pavlovic, G., Peterson, J. L., Pollock, J., Ramirez-Solis, R., Rancourt, D. E., Raspa, M., Remacle, J. E., Ringwald, M., Rosen, B., Rosenthal, N., Rossant, J., Ruiz Noppinger, P., Ryder, E., Schick, J. Z., Schnütgen, F., Schofield, P., Seisenberger, C., Selloum, M., Simpson, E. M., Skarnes, W. C., Smedley, D., Stanford, W. L., Stewart, A. F., Stone, K., Swan, K., Tadepally, H., Teboul, L., Tocchini-Valentini, G. P., Valenzuela, D., West, A. P., Yamamura, K., Yoshinaga, Y., and Wurst, W. (2012). The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm. Genome 23, 580–586.
The mammalian gene function resource: the International Knockout Mouse Consortium.Crossref | GoogleScholarGoogle Scholar |

Buehr, M., Meek, S., Blair, K., Yang, J., Ure, J., Silva, J., McLay, R., Hall, J., Ying, Q. L., and Smith, A. (2008). Capture of authentic embryonic stem cells from rat blastocysts. Cell 135, 1287–1298.
Capture of authentic embryonic stem cells from rat blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFyisA%3D%3D&md5=70133a5c68c95881bdeb43aed8ca23daCAS |

Carbery, I. D., Ji, D., Harrington, A., Brown, V., Weinstein, E. J., Liaw, L., and Cui, X. (2010). Targeted genome modification in mice using zinc-finger nucleases. Genetics 186, 451–459.
Targeted genome modification in mice using zinc-finger nucleases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOnt7rI&md5=c6611d7cca90286853a640ffa44b740bCAS |

Carlson, D. F., Tan, W., Lillico, S. G., Stverakova, D., Proudfoot, C., Christian, M., Voytas, D. F., Long, C. R., Whitelaw, C. B., and Fahrenkrug, S. C. (2012). Efficient TALEN-mediated gene knockout in livestock. Proc. Natl Acad. Sci. USA 109, 17 382–17 387.
Efficient TALEN-mediated gene knockout in livestock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSltL3K&md5=0b7dc6b97ece7d597e8decb3d3e7d1b2CAS |

Cermak, T., Starker, C. G., and Voytas, D. F. (2015). Efficient design and assembly of custom TALENs using the Golden Gate platform. Methods Mol. Biol. 1239, 133–159.
Efficient design and assembly of custom TALENs using the Golden Gate platform.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjtVyqtbk%3D&md5=05664738e56512029b5a26e2da38297aCAS |

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., and Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823.
Multiplex genome engineering using CRISPR/Cas systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1ygtb8%3D&md5=25512c839e00286bbeabefc0702c321aCAS |

Crispo, M., Mulet, A. P., Tesson, L., Barrera, N., Cuadro, F., dos Santos-Neto, P. C., Nguyen, T. H., Crénéguy, A., Brusselle, L., Anegón, I., and Menchaca, A. (2015). Efficient Generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One 10, e0136690.
Efficient Generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC287mt12juw%3D%3D&md5=cf377da78094a6b7a4c9e0a6237bdc3aCAS |

Cui, C., Song, Y., Liu, J., Ge, H., Li, Q., Huang, H., Hu, L., Zhu, H., Jin, Y., and Zhang, Y. (2015). Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk. Sci. Rep. 5, 10482.
Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk.Crossref | GoogleScholarGoogle Scholar |

Daimon, T., Uchibori, M., Nakao, H., Sezutsu, H., and Shinoda, T. (2015). Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle. Proc. Natl Acad. Sci. USA 112, E4226–E4235.
Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtF2hsrvN&md5=37b9066979c6752824f907887e3f8d74CAS |

Doudna, J. A., and Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096.
Genome editing. The new frontier of genome engineering with CRISPR–Cas9.Crossref | GoogleScholarGoogle Scholar |

Fischer, K., Kraner-Scheiber, S., Petersen, B., Rieblinger, B., Buermann, A., Flisikowska, T., Flisikowski, K., Christan, S., Edlinger, M., Baars, W., Kurome, M., Zakhartchenko, V., Kessler, B., Plotzki, E., Szczerbal, I., Switonski, M., Denner, J., Wolf, E., Schwinzer, R., Niemann, H., Kind, A., and Schnieke, A. (2016). Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing. Sci. Rep. 6, 29081.
Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFSqt7jP&md5=850576167d7186a76cfe5b88b7e6f07cCAS |

Gao, F., Shen, X. Z., Jiang, F., Wu, Y., and Han, C. (2016). DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat. Biotechnol. 34, 768–773.
DNA-guided genome editing using the Natronobacterium gregoryi Argonaute.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmvFOqsro%3D&md5=44e55dd325ac2a2d297b2ddd9000b1d5CAS |

Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. (2012). Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579–E2586.
Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCrsLfO&md5=ef3ec120b162e7a24bc169b48bb7410eCAS |

Geurts, A. M., Cost, G. J., Freyvert, Y., Zeitler, B., Miller, J. C., Choi, V. M., Jenkins, S. S., Wood, A., Cui, X., Meng, X., Vincent, A., Lam, S., Michalkiewicz, M., Schilling, R., Foeckler, J., Kalloway, S., Weiler, H., Ménoret, S., Anegon, I., Davis, G. D., Zhang, L., Rebar, E. J., Gregory, P. D., Urnov, F. D., Jacob, H. J., and Buelow, R. (2009). Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325, 433.
Knockout rats via embryo microinjection of zinc-finger nucleases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVChtrY%3D&md5=50ec324b2da01508979e08a47984569dCAS |

Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D. U., Jung, I., Wu, H., Zhai, Y., Tang, Y., Lu, Y., Wu, Y., Jia, Z., Li, W., Zhang, M. Q., Ren, B., Krainer, A. R., Maniatis, T., and Wu, Q. (2015). CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162, 900–910.
CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlCisLnI&md5=926496c6b774c35106405a23cd038889CAS |

Guo, R., Wan, Y., Xu, D., Cui, L., Deng, M., Zhang, G., Jia, R., Zhou, W., Wang, Z., Deng, K., Huang, M., Wang, F., and Zhang, Y. (2016). Generation and evaluation of myostatin knock-out rabbits and goats using CRISPR/Cas9 system. Sci. Rep. 6, 29855.
Generation and evaluation of myostatin knock-out rabbits and goats using CRISPR/Cas9 system.Crossref | GoogleScholarGoogle Scholar |

Hai, T., Teng, F., Guo, R., Li, W., and Zhou, Q. (2014). One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res. 24, 372–375.
One-step generation of knockout pigs by zygote injection of CRISPR/Cas system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsl2gsLk%3D&md5=0ca54353b0fa89ce7f239a371549edc5CAS |

Han, Y., Slivano, O. J., Christie, C. K., Cheng, A. W., and Miano, J. M. (2015). CRISPR–Cas9 genome editing of a single regulatory element nearly abolishes target gene expression in mice – brief report. Arterioscler. Thromb. Vasc. Biol. 35, 312–315.
CRISPR–Cas9 genome editing of a single regulatory element nearly abolishes target gene expression in mice – brief report.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFyrtbY%3D&md5=8efaafa8b3cf8ab141d0dbf3a361b689CAS |

Harms, D. W., Quadros, R. M., Seruggia, D., Ohtsuka, M., Takahashi, G., Montoliu, L., and Gurumurthy, C. B. (2014). Mouse genome editing using the CRISPR/Cas system. Curr. Protoc. Hum. Genet. 83, 15.7.1–15.7.27.
Mouse genome editing using the CRISPR/Cas system.Crossref | GoogleScholarGoogle Scholar |

Hauschild, J., Petersen, B., Santiago, Y., Queisser, A. L., Carnwath, J. W., Lucas-Hahn, A., Zhang, L., Meng, X., Gregory, P. D., Schwinzer, R., Cost, G. J., and Niemann, H. (2011). Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc. Natl Acad. Sci. USA 108, 12 013–12 017.
Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFyku7o%3D&md5=c6ec83c88f4fbf86ef4f5d7101d3ed84CAS |

Hermann, M., Maeder, M. L., Rector, K., Ruiz, J., Becher, B., Bürki, K., Khayter, C., Aguzzi, A., Joung, J. K., Buch, T., and Pelczar, P. (2012). Evaluation of OPEN zinc finger nucleases for direct gene targeting of the ROSA26 locus in mouse embryos. PLoS One 7, e41796.
Evaluation of OPEN zinc finger nucleases for direct gene targeting of the ROSA26 locus in mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGitLfK&md5=6bf20bbed0d6f44d6f220b0a4779ee31CAS |

Hsu, P. D., Lander, E. S., and Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278.
Development and applications of CRISPR-Cas9 for genome engineering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslagt7s%3D&md5=ab82238392af11007bb78f9794e894fcCAS |

Ikmi, A., McKinney, S. A., Delventhal, K. M., and Gibson, M. C. (2014). TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nat. Commun. 5, 5486.
TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksVCjt7Y%3D&md5=3a771600fc4d17339c66b472615ca815CAS |

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821.
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOqsb3L&md5=03db2e35c779a9d33588e900c690d8d7CAS |

Kleinstiver, B. P., Prew, M. S., Tsai, S. Q., Topkar, V. V., Nguyen, N. T., Zheng, Z., Gonzales, A. P., Li, Z., Peterson, R. T., Yeh, J. R., Aryee, M. J., and Joung, J. K. (2015). Engineered CRISPR–Cas9 nucleases with altered PAM specificities. Nature 523, 481–485.
Engineered CRISPR–Cas9 nucleases with altered PAM specificities.Crossref | GoogleScholarGoogle Scholar |

Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z., and Joung, J. K. (2016). High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495.
High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xns1GmsQ%3D%3D&md5=020e9b75025b977c59dcd0543c2152b3CAS |

Kwon, D. N., Lee, K., Kang, M. J., Choi, Y. J., Park, C., Whyte, J. J., Brown, A. N., Kim, J. H., Samuel, M., Mao, J., Park, K. W., Murphy, C. N., Prather, R. S., and Kim, J. H. (2013). Production of biallelic CMP–Neu5Ac hydroxylase knock-out pigs. Sci. Rep. 3, 1981.
Production of biallelic CMP–Neu5Ac hydroxylase knock-out pigs.Crossref | GoogleScholarGoogle Scholar |

Lai, S., Wei, S., Zhao, B., Ouyang, Z., Zhang, Q., Fan, N., Liu, Z., Zhao, Y., Yan, Q., Zhou, X., Li, L., Xin, J., Zeng, Y., Lai, L., and Zou, Q. (2016). Generation of knock-in pigs carrying Oct4-tdTomato reporter through CRISPR/Cas9-mediated genome engineering. PLoS One 11, e0146562.
Generation of knock-in pigs carrying Oct4-tdTomato reporter through CRISPR/Cas9-mediated genome engineering.Crossref | GoogleScholarGoogle Scholar |

Lillico, S. G., Proudfoot, C., King, T. J., Tan, W., Zhang, L., Mardjuki, R., Paschon, D. E., Rebar, E. J., Urnov, F. D., Mileham, A. J., McLaren, D. G., and Whitelaw, C. B. (2016). Mammalian interspecies substitution of immune modulatory alleles by genome editing. Sci. Rep. 6, 21645.
Mammalian interspecies substitution of immune modulatory alleles by genome editing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XivFGrt7s%3D&md5=b398810b5ae517ebc5588a333d71835eCAS |

Liu, X., Wang, Y., Guo, W., Chang, B., Liu, J., Guo, Z., Quan, F., and Zhang, Y. (2013). Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat. Commun. 4, 2565.

Liu, H., Chen, Y., Niu, Y., Zhang, K., Kang, Y., Ge, W., Liu, X., Zhao, E., Wang, C., Lin, S., Jing, B., Si, C., Lin, Q., Chen, X., Lin, H., Pu, X., Wang, Y., Qin, B., Wang, F., Wang, H., Si, W., Zhou, J., Tan, T., Li, T., Ji, S., Xue, Z., Luo, Y., Cheng, L., Zhou, Q., Li, S., Sun, Y. E., and Ji, W. (2014a). TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 14, 323–328.
TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFCjtr4%3D&md5=0843a6117d48d4ea8daf35a5b3b6a071CAS |

Liu, X., Wang, Y., Tian, Y., Yu, Y., Gao, M., Hu, G., Su, F., Pan, S., Luo, Y., Guo, Z., Quan, F., and Zhang, Y. (2014b). Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases. Proc. Biol. Sci. 281, 20133368.
Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases.Crossref | GoogleScholarGoogle Scholar |

Lupiáñez, D. G., Kraft, K., Heinrich, V., Krawitz, P., Brancati, F., Klopocki, E., Horn, D., Kayserili, H., Opitz, J. M., Laxova, R., Santos-Simarro, F., Gilbert-Dussardier, B., Wittler, L., Borschiwer, M., Haas, S. A., Osterwalder, M., Franke, M., Timmermann, B., Hecht, J., Spielmann, M., Visel, A., and Mundlos, S. (2015). Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025.
Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions.Crossref | GoogleScholarGoogle Scholar |

Lv, Q., Yuan, L., Deng, J., Chen, M., Wang, Y., Zeng, J., Li, Z., and Lai, L. (2016). Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9. Sci. Rep. 6, 25029.
Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmvVCrtbc%3D&md5=d2206de1a0b912b824f35b0251a4af7bCAS |

Ma, Y., Ma, J., Zhang, X., Chen, W., Yu, L., Lu, Y., Bai, L., Shen, B., Huang, X., and Zhang, L. (2014). generation of eGFP and Cre knockin rats by CRISPR/Cas9. FEBS J. 281, 3779–3790.
generation of eGFP and Cre knockin rats by CRISPR/Cas9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVGgsrfI&md5=ef1c0bbc0d43f8c613c1e8b6ee04c4fbCAS |

Ma, L., Jeffery, W. R., Essner, J. J., and Kowalko, J. E. (2015). Genome editing using TALENs in blind Mexican cavefish, Astyanax mexicanus. PLoS One 10, e0119370.
Genome editing using TALENs in blind Mexican cavefish, Astyanax mexicanus.Crossref | GoogleScholarGoogle Scholar |

Maddalo, D., Manchado, E., Concepcion, C. P., Bonetti, C., Vidigal, J. A., Han, Y. C., Ogrodowski, P., Crippa, A., Rekhtman, N., de Stanchina, E., Lowe, S. W., and Ventura, A. (2014). In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516, 423–427.
In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVemtrvL&md5=4ae9827c6a3c6bf763da2766a1c6621cCAS |

Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., and Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science 339, 823–826.
RNA-guided human genome engineering via Cas9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1ygtb0%3D&md5=cf687fdc12a92ed2f180522aa1539315CAS |

Meyer, M., de Angelis, M. H., Wurst, W., and Kühn, R. (2010). Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc. Natl Acad. Sci. USA 107, 15 022–15 026.
Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFSmt7vP&md5=2933bf844d31389d92cc8d8603ddba06CAS |

Mohanraju, P., Makarova, K. S., Zetsche, B., Zhang, F., Koonin, E. V., and van der Oost, J. (2016). Diverse evolutionary roots and mechanistic variations of the CRISPR–Cas systems. Science 353, .
Diverse evolutionary roots and mechanistic variations of the CRISPR–Cas systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1Oks7jJ&md5=7b185d2760610857e85e6f781cd55d3aCAS |

Mojica, F. J., and Montoliu, L. (2016). On the origin of CRISPR–Cas technology: from prokaryotes to mammals. Trends Microbiol. 24, 811–820.
On the origin of CRISPR–Cas technology: from prokaryotes to mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVKntr%2FO&md5=9972c775f4adbfa8ea62d835657c3575CAS |

Montoliu, L. (2002). Gene transfer strategies in animal transgenesis. Cloning Stem Cells 4, 39–46.
Gene transfer strategies in animal transgenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Gku7s%3D&md5=d3c867f40f50fc34eb2f1fb2b733037eCAS |

Ni, W., Qiao, J., Hu, S., Zhao, X., Regouski, M., Yang, M., Polejaeva, I. A., and Chen, C. (2014). Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One 9, e106718.
Efficient gene knockout in goats using CRISPR/Cas9 system.Crossref | GoogleScholarGoogle Scholar |

Niemann, H., and Petersen, B. (2016). The production of multi-transgenic pigs: update and perspectives for xenotransplantation. Transgenic Res. 25, 361–374.
The production of multi-transgenic pigs: update and perspectives for xenotransplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFyrur4%3D&md5=9390a947570b7c67441f038a3e0dfcd1CAS |

Palmiter, R. D., and Brinster, R. L. (1986). Germ-line transformation of mice. Annu. Rev. Genet. 20, 465–499.
Germ-line transformation of mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmtFyksg%3D%3D&md5=3c2c0b8d84257770cb63fff9a30c85ffCAS |

Panda, S. K., Wefers, B., Ortiz, O., Floss, T., Schmid, B., Haass, C., Wurst, W., and Kühn, R. (2013). Highly efficient targeted mutagenesis in mice using TALENs. Genetics 195, 703–713.
Highly efficient targeted mutagenesis in mice using TALENs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlGjtLg%3D&md5=3375f396c72195d7fda8f7568824da46CAS |

Park, T. S., Lee, H. J., Kim, K. H., Kim, J. S., and Han, J. Y. (2014). Targeted gene knockout in chickens mediated by TALENs. Proc. Natl Acad. Sci. USA 111, 12 716–12 721.
Targeted gene knockout in chickens mediated by TALENs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVarsbfM&md5=124082565c188c4415fbc2a44751b2caCAS |

Peng, J., Wang, Y., Jiang, J., Zhou, X., Song, L., Wang, L., Ding, C., Qin, J., Liu, L., Wang, W., Liu, J., Huang, X., Wei, H., and Zhang, P. (2015). Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Sci. Rep. 5, 16705.
Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes.Crossref | GoogleScholarGoogle Scholar |

Petersen, B., and Niemann, H. (2015). Advances in genetic modification of farm animals using zinc-finger nucleases (ZFN). Chromosome Res. 23, 7–15.
Advances in genetic modification of farm animals using zinc-finger nucleases (ZFN).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpvFWjtg%3D%3D&md5=7d89144dd80364db585586362c6e6e45CAS |

Platt, R. J., Chen, S., Zhou, Y., Yim, M. J., Swiech, L., Kempton, H. R., Dahlman, J. E., Parnas, O., Eisenhaure, T. M., Jovanovic, M., Graham, D. B., Jhunjhunwala, S., Heidenreich, M., Xavier, R. J., Langer, R., Anderson, D. G., Hacohen, N., Regev, A., Feng, G., Sharp, P. A., and Zhang, F. (2014). CRISPR–Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455.
CRISPR–Cas9 knockin mice for genome editing and cancer modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1agsbbE&md5=661718a6fcfae19cdeb940dd1d67cb5eCAS |

Proudfoot, C., Carlson, D. F., Huddart, R., Long, C. R., Pryor, J. H., King, T. J., Lillico, S. G., Mileham, A. J., McLaren, D. G., Whitelaw, C. B., and Fahrenkrug, S. C. (2015). Genome edited sheep and cattle. Transgenic Res. 24, 147–153.
Genome edited sheep and cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFSgsLrF&md5=f3d7aa43e5eeaa88e71227ee26a7f714CAS |

Pyzocha, N. K., Ran, F. A., Hsu, P. D., and Zhang, F. (2014). RNA-guided genome editing of mammalian cells. Methods Mol. Biol. 1114, 269–277.
RNA-guided genome editing of mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnvVWgs7w%3D&md5=9fc3c845453bf0b6b329bd727f06367eCAS |

Qian, L., Tang, M., Yang, J., Wang, Q., Cai, C., Jiang, S., Li, H., Jiang, K., Gao, P., Ma, D., Chen, Y., An, X., Li, K., and Cui, W. (2015). Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci. Rep. 5, 14435.
Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFGksbbI&md5=4b8efea0498441cb40e46a198e352649CAS |

Rémy, S., Tesson, L., Ménoret, S., Usal, C., Scharenberg, A. M., and Anegon, I. (2010). Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Res. 19, 363–371.
Zinc-finger nucleases: a powerful tool for genetic engineering of animals.Crossref | GoogleScholarGoogle Scholar |

Saiki, R. K., Bugawan, T. L., Horn, G. T., Mullis, K. B., and Erlich, H. A. (1986). Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature 324, 163–166.
Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXksV2qtQ%3D%3D&md5=6b8d98a6b9578be0b7cb85a8708e0bbeCAS |

Sander, J. D., and Joung, J. K. (2014). CRISPR–Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355.
CRISPR–Cas systems for editing, regulating and targeting genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtlyrsLo%3D&md5=cb76350de539ebff0481a277856fe78cCAS |

Seruggia, D., and Montoliu, L. (2014). The new CRISPR–Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alteration in animals. Transgenic Res. 23, 707–716.
The new CRISPR–Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alteration in animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1KgsbzM&md5=5e0493848f428049b1d8ef6acbe8d842CAS |

Seruggia, D., Fernández, A., Cantero, M., Pelczar, P., and Montoliu, L. (2015). Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR–Cas9-mediated mutagenesis. Nucleic Acids Res. 43, 4855–4867.
Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR–Cas9-mediated mutagenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFaitL3F&md5=d1a6eee5f3f8a4cf95de5923126b88dfCAS |

Slaymaker, I. M., Gao, L., Zetsche, B., Scott, D. A., Yan, W. X., and Zhang, F. (2016). Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88.
Rationally engineered Cas9 nucleases with improved specificity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitV2nt7nE&md5=419fe90ad4754d1595a13482d02f13e4CAS |

Sommer, D., Peters, A. E., Baumgart, A. K., and Beyer, M. (2015). TALEN-mediated genome engineering to generate targeted mice. Chromosome Res. 23, 43–55.
TALEN-mediated genome engineering to generate targeted mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpvFSqsg%3D%3D&md5=f7045d90ddcbeb5bc88370bc68b4b30cCAS |

Sung, Y. H., Baek, I. J., Kim, D. H., Jeon, J., Lee, J., Lee, K., Jeong, D., Kim, J. S., and Lee, H. W. (2013). Knockout mice created by TALEN-mediated gene targeting. Nat. Biotechnol. 31, 23–24.
Knockout mice created by TALEN-mediated gene targeting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVCksg%3D%3D&md5=a0d1792b0ac7504ec97db221647c43f4CAS |

Swarts, D. C., Jore, M. M., Westra, E. R., Zhu, Y., Janssen, J. H., Snijders, A. P., Wang, Y., Patel, D. J., Berenguer, J., Brouns, S. J., and van der Oost, J. (2014). DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507, 258–261.
DNA-guided DNA interference by a prokaryotic Argonaute.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktV2rt7o%3D&md5=98e768604f75bd125282a40b7eba2de1CAS |

Tan, W., Carlson, D. F., Lancto, C. A., Garbe, J. R., Webster, D. A., Hackett, P. B., and Fahrenkrug, S. C. (2013). Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc. Natl Acad. Sci. USA 110, 16 526–16 531.
Efficient nonmeiotic allele introgression in livestock using custom endonucleases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Kju7%2FL&md5=739a1fd1657e80b34b9e6d5afd9d29c0CAS |

Tan, W., Proudfoot, C., Lillico, S. G., and Whitelaw, C. B. (2016). Gene targeting, genome editing: from Dolly to editors. Transgenic Res. 25, 273–287.
Gene targeting, genome editing: from Dolly to editors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitVWhs74%3D&md5=a4a0d79cf07257514bd2b5e343f073ffCAS |

Tesson, L., Usal, C., Ménoret, S., Leung, E., Niles, B. J., Remy, S., Santiago, Y., Vincent, A. I., Meng, X., Zhang, L., Gregory, P. D., Anegon, I., and Cost, G. J. (2011). Knockout rats generated by embryo microinjection of TALENs. Nat. Biotechnol. 29, 695–696.
Knockout rats generated by embryo microinjection of TALENs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVOlurY%3D&md5=59fc39760e2eb4855393b2b3dffa50c3CAS |

Trounson, A. O. (2006). Future and applications of cloning. Methods Mol. Biol. 348, 319–331.
Future and applications of cloning.Crossref | GoogleScholarGoogle Scholar |

Wang, Z. (2015). Genome engineering in cattle: recent technological advancements. Chromosome Res. 23, 17–29.
Genome engineering in cattle: recent technological advancements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpvFSqtQ%3D%3D&md5=7e2ad5691a9b8e1a38b044b6f8178d60CAS |

Wang, H., Yang, H., Shivalila, C. S., Dawlaty, M. M., Cheng, A. W., Zhang, F., and Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918.
One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvF2nt7w%3D&md5=d53fe22f23b031ff45616107b067c966CAS |

Wang, X., Yu, H., Lei, A., Zhou, J., Zeng, W., Zhu, H., Dong, Z., Niu, Y., Shi, B., Cai, B., Liu, J., Huang, S., Yan, H., Zhao, X., Zhou, G., He, X., Chen, X., Yang, Y., Jiang, Y., Shi, L., Tian, X., Wang, Y., Ma, B., Huang, X., Qu, L., and Chen, Y. (2015). Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci. Rep. 5, 13878.
Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system.Crossref | GoogleScholarGoogle Scholar |

Wang, X., Cao, C., Huang, J., Yao, J., Hai, T., Zheng, Q., Wang, X., Zhang, H., Qin, G., Cheng, J., Wang, Y., Yuan, Z., Zhou, Q., Wang, H., and Zhao, J. (2016). One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci. Rep. 6, 20620.
One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xitlymurs%3D&md5=e8fb2efb5ab74935ebefec70cd4288f9CAS |

Wefers, B., Panda, S. K., Ortiz, O., Brandl, C., Hensler, S., Hansen, J., Wurst, W., and Kühn, R. (2013). Generation of targeted mouse mutants by embryo microinjection of TALEN mRNA. Nat. Protoc. 8, 2355–2379.
Generation of targeted mouse mutants by embryo microinjection of TALEN mRNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslSnsL%2FF&md5=261e617c299c1ccd3d5168a9bb526bfbCAS |

Wei, J., Wagner, S., Lu, D., Maclean, P., Carlson, D. F., Fahrenkrug, S. C., and Laible, G. (2015). Efficient introgression of allelic variants by embryo-mediated editing of the bovine genome. Sci. Rep. 5, 11735.
Efficient introgression of allelic variants by embryo-mediated editing of the bovine genome.Crossref | GoogleScholarGoogle Scholar |

Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.
Viable offspring derived from fetal and adult mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsFamsLs%3D&md5=4da75c47ce70dd651256dd157af053c1CAS |

Wu, H., Wang, Y., Zhang, Y., Yang, M., Lv, J., Liu, J., and Zhang, Y. (2015). TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc. Natl Acad. Sci. USA 112, E1530–E1539.
TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjs1Gqsr4%3D&md5=59f83b550b1f8f4aea62dfa47fc3d2d5CAS |

Xiao, A., Wang, Z., Hu, Y., Wu, Y., Luo, Z., Yang, Z., Zu, Y., Li, W., Huang, P., Tong, X., Zhu, Z., Lin, S., and Zhang, B. (2013). Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res. 41, e141.
Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1CktLbK&md5=02d2ad561b5694edf11c7cb124ea80ebCAS |

Xin, J., Yang, H., Fan, N., Zhao, B., Ouyang, Z., Liu, Z., Zhao, Y., Li, X., Song, J., Yang, Y., Zou, Q., Yan, Q., Zeng, Y., and Lai, L. (2013). Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PLoS One 8, e84250.
Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs.Crossref | GoogleScholarGoogle Scholar |

Yang, H., Wang, H., Shivalila, C. S., Cheng, A. W., Shi, L., and Jaenisch, R. (2013). One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154, 1370–1379.
One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlGqtr%2FN&md5=7872cc94fdd1278b5bca2ebe2d2826daCAS |

Yang, H., Wang, H., and Jaenisch, R. (2014). Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat. Protoc. 9, 1956–1968.
Generating genetically modified mice using CRISPR/Cas-mediated genome engineering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1WlurbE&md5=926043f63cccac45c54769c60cd7d8f7CAS |

Yang, L., Güell, M., Niu, D., George, H., Lesha, E., Grishin, D., Aach, J., Shrock, E., Xu, W., Poci, J., Cortazio, R., Wilkinson, R. A., Fishman, J. A., and Church, G. (2015). Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350, 1101–1104.
Genome-wide inactivation of porcine endogenous retroviruses (PERVs).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFamtLrM&md5=33664ea10014981e93ac02dab9c0b567CAS |

Yu, S., Luo, J., Song, Z., Ding, F., Dai, Y., and Li, N. (2011). Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res. 21, 1638–1640.
Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVags7%2FF&md5=ca344fc15102237758c57d9c9f589a70CAS |

Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., van der Oost, J., Regev, A., Koonin, E. V., and Zhang, F. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771.
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFKqtLvI&md5=09623b5f40b8744fc32d15ec5a8a4c77CAS |

Zhang, L., Jia, R., Palange, N. J., Satheka, A. C., Togo, J., An, Y., Humphrey, M., Ban, L., Ji, Y., Jin, H., Feng, X., and Zheng, Y. (2015). Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9. PLoS One 10, e0120396.
Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9.Crossref | GoogleScholarGoogle Scholar |

Zu, Y., Tong, X., Wang, Z., Liu, D., Pan, R., Li, Z., Hu, Y., Luo, Z., Huang, P., Wu, Q., Zhu, Z., Zhang, B., and Lin, S. (2013). TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat. Methods 10, 329–331.
TALEN-mediated precise genome modification by homologous recombination in zebrafish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFyls7c%3D&md5=ec1512b8be3e6f9ba363704ac781211aCAS |