Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Potential role of microRNAs in mammalian female fertility

Dawit Tesfaye A C E , Dessie Salilew-Wondim A , Samuel Gebremedhn A , Md Mahmodul Hasan Sohel D , Hari Om Pandey A , Michael Hoelker A B C and Karl Schellander A C
+ Author Affiliations
- Author Affiliations

A Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany.

B Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Frankenforsterweg 4, 53639 Königswinter, Germany.

C Center of Integrated Dairy Research, University of Bonn, Meckenheimer Allee 172, 53115 Bonn, Germany.

D Department of Animal Science, Faculty of Agriculture, Genome and Stem Cell Centre, Erciyes University, Kayseri 38039, Turkey.

E Corresponding author. Email: tesfaye@itw.uni-bonn.de

Reproduction, Fertility and Development 29(1) 8-23 https://doi.org/10.1071/RD16266
Published: 2 December 2016

Abstract

Since the first evidence for the involvement of microRNAs (miRNAs) in various reproductive processes through conditional knockout of DICER, several studies have been conducted to investigate the expression pattern and role of miRNAs in ovarian follicular development, oocyte maturation, embryo development, embryo–maternal communication, pregnancy establishment and various reproductive diseases. Although advances in sequencing technology have fuelled miRNA studies in mammalian species, the presence of extracellular miRNAs in various biological fluids, including follicular fluid, blood plasma, urine and milk among others, has opened a new door in miRNA research for their use as diagnostic markers. This review presents data related to the identification and expression analysis of cellular miRNA in mammalian female fertility associated with ovarian folliculogenesis, oocyte maturation, preimplantation embryo development and embryo implantation. In addition, the relevance of miRNAs to female reproductive disorders, including polycystic ovary syndrome (PCOS), endometritis and abnormal pregnancies, is discussed for various mammalian species. Most importantly, the mechanism of release and the role of extracellular miRNAs in cell–cell communication and their potential role as non-invasive markers in female fertility are discussed in detail. Understanding this layer of regulation in female reproduction processes will pave the way to understanding the genetic regulation of female fertility in mammalian species.

Additional keywords: embryo, endometrium, oocyte, ovary, placenta, polycystic ovary syndrome.


References

Abd El Naby, W. S., Hagos, T. H., Hossain, M. M., Salilew-Wondim, D., Gad, A. Y., Rings, F., Cinar, M. U., Tholen, E., Looft, C., Schellander, K., Hoelker, M., and Tesfaye, D. (2013). Expression analysis of regulatory microRNAs in bovine cumulus oocyte complex and preimplantation embryos. Zygote 21, 31–51.
Expression analysis of regulatory microRNAs in bovine cumulus oocyte complex and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVamtb4%3D&md5=e650ad0da628743113b224f9cab99c3cCAS |

Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Brownstein, M. J., Tuschl, T., and Margalit, H. (2005). Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 33, 2697–2706.
Clustering and conservation patterns of human microRNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktF2nsLc%3D&md5=3cf448410ed7090ab47da70ef10850c0CAS |

Andreas, E., Hoelker, M., Neuhoff, C., Tholen, E., Schellander, K., Tesfaye, D., and Salilew-Wondim, D. (2016). MicroRNA 17–92 cluster regulates proliferation and differentiation of bovine granulosa cells by targeting PTEN and BMPR2 genes. Cell Tissue Res. , .
MicroRNA 17–92 cluster regulates proliferation and differentiation of bovine granulosa cells by targeting PTEN and BMPR2 genes.Crossref | GoogleScholarGoogle Scholar |

Anton, L., Olarerin-George, A. O., Schwartz, N., Srinivas, S., Bastek, J., Hogenesch, J. B., and Elovitz, M. A. (2013). miR-210 inhibits trophoblast invasion and is a serum biomarker for preeclampsia. Am. J. Pathol. 183, 1437–1445.
miR-210 inhibits trophoblast invasion and is a serum biomarker for preeclampsia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Oru7nL&md5=97a520b9be28f192c3f60bee81841397CAS |

Aplin, J. D. (2010). Developmental cell biology of human villous trophoblast: current research problems. Int. J. Dev. Biol. 54, 323–329.
Developmental cell biology of human villous trophoblast: current research problems.Crossref | GoogleScholarGoogle Scholar |

Arbel, R., Bigun, Y., Ezra, E., Sturman, H., and Hojman, D. (2001). The effect of extended calving intervals in high-yielding lactating cows on milk production and profitability. J. Dairy Sci. 84, 600–608.
The effect of extended calving intervals in high-yielding lactating cows on milk production and profitability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1Ontrc%3D&md5=d4b99b422206b2700a213fff605438e4CAS |

Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., Mitchell, P. S., Bennett, C. F., Pogosova-Agadjanyan, E. L., Stirewalt, D. L., Tait, J. F., and Tewari, M. (2011). Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108, 5003–5008.
Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVCjsro%3D&md5=ffa7dd7a03ec6746acd71ef38969fee2CAS |

Assou, S., Haouzi, D., de Vos, J., and Hamamah, S. (2010). Human cumulus cells as biomarkers for embryo and pregnancy outcomes. Mol. Hum. Reprod. 16, 531–538.
Human cumulus cells as biomarkers for embryo and pregnancy outcomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlegt70%3D&md5=209df48276b428999b334067c45e9ac9CAS |

Aydiner, F., Yetkin, C. E., and Seli, E. (2010). Perspectives on emerging biomarkers for non-invasive assessment of embryo viability in assisted reproduction. Curr. Mol. Med. 10, 206–215.
Perspectives on emerging biomarkers for non-invasive assessment of embryo viability in assisted reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFKgu7w%3D&md5=6ac97092a4c52f1202076eaef5ad2151CAS |

Azziz, R., Carmina, E., Dewailly, D., Diamanti-Kandarakis, E., Escobar-Morreale, H. F., Futterweit, W., Janssen, O. E., Legro, R. S., Norman, R. J., Taylor, A. E., and Witchel, S. F. (2009). The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil. Steril. 91, 456–488.
The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report.Crossref | GoogleScholarGoogle Scholar |

Balaraman, S., Lunde, E. R., Sawant, O., Cudd, T. A., Washburn, S. E., and Miranda, R. C. (2014). Maternal and neonatal plasma microRNA biomarkers for fetal alcohol exposure in an ovine model. Alcohol. Clin. Exp. Res. 38, 1390–1400.
Maternal and neonatal plasma microRNA biomarkers for fetal alcohol exposure in an ovine model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvVyrtLg%3D&md5=a28b74879db0b886e11648b88aa3f1a0CAS |

Barad, O., Meiri, E., Avniel, A., Aharonov, R., Barzilai, A., Bentwich, I., Einav, U., Gilad, S., Hurban, P., Karov, Y., Lobenhofer, E. K., Sharon, E., Shiboleth, Y. M., Shtutman, M., Bentwich, Z., and Einat, P. (2004). MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res. 14, 2486–2494.
MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVyiurzO&md5=a58be6c393f019b877933141cb9d16c1CAS |

Barnhart, K. T. (2009). Clinical practice. Ectopic pregnancy. N. Engl. J. Med. 361, 379–387.
Clinical practice. Ectopic pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFCqu70%3D&md5=b45ce642a04568a93a0f1413921d46ecCAS |

Bonnet, A., Cabau, C., Bouchez, O., Sarry, J., Marsaud, N., Foissac, S., Woloszyn, F., Mulsant, P., and Mandon-Pepin, B. (2013). An overview of gene expression dynamics during early ovarian folliculogenesis: specificity of follicular compartments and bi-directional dialog. BMC Genomics 14, 904.

Bullerdiek, J., and Flor, I. (2012). Exosome-delivered microRNAs of ‘chromosome 19 microRNA cluster’ as immunomodulators in pregnancy and tumorigenesis. Mol. Cytogenet. 5, 27.
Exosome-delivered microRNAs of ‘chromosome 19 microRNA cluster’ as immunomodulators in pregnancy and tumorigenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWlsrvL&md5=6209264817056c5c90922ed340a05990CAS |

Capalbo, A., Ubaldi, F. M., Cimadomo, D., Noli, L., Khalaf, Y., Farcomeni, A., Ilic, D., and Rienzi, L. (2016). MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertil. Steril. 105, 225–235.e1–3.
MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslemsrbM&md5=abc6aa6dabdc75d1f5e2bf2343aaf128CAS |

Cetin, I., and Alvino, G. (2009). Intrauterine growth restriction: implications for placental metabolism and transport. A review. Placenta 30, S77–S82.
Intrauterine growth restriction: implications for placental metabolism and transport. A review.Crossref | GoogleScholarGoogle Scholar |

Chakrabarty, A., Tranguch, S., Daikoku, T., Jensen, K., Furneaux, H., and Dey, S. K. (2007). MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proc. Natl Acad. Sci. USA 104, 15 144–15 149.
MicroRNA regulation of cyclooxygenase-2 during embryo implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2jur%2FN&md5=a01517933f2b644d482c0dc3ef455d5dCAS |

Chen, X.-M., Splinter, P. L., O’Hara, S. P., and LaRusso, N. F. (2007). A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J. Biol. Chem. 282, 28 929–28 938.
A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOmtbjO&md5=5fd2c5663990887712889651adc16229CAS |

Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., Guo, J., Zhang, Y., Chen, J., Guo, X., et al. (2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18, 997–1006.
Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2hsbbE&md5=9b7226b7d6f930e6eabd615cec14ad3dCAS |

Cheong, A. W., Pang, R. T., Liu, W. M., Kottawatta, K. S., Lee, K. F., and Yeung, W. S. (2014). MicroRNA Let-7a and dicer are important in the activation and implantation of delayed implanting mouse embryos. Hum. Reprod. 29, 750–762.
MicroRNA Let-7a and dicer are important in the activation and implantation of delayed implanting mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktl2gsb8%3D&md5=c87906f8c13b7c79f3b84d99fad21c01CAS |

Chim, S. S., Shing, T. K., Hung, E. C., Leung, T. Y., Lau, T. K., Chiu, R. W., and Lo, Y. M. (2008). Detection and characterization of placental microRNAs in maternal plasma. Clin. Chem. 54, 482–490.
Detection and characterization of placental microRNAs in maternal plasma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivVansrc%3D&md5=fcc62624cced015d391f65b7ca239a66CAS |

Cho, S., Mutlu, L., Grechukhina, O., and Taylor, H. S. (2015). Circulating microRNAs as potential biomarkers for endometriosis. Fertil. Steril. 103, 1252–1260.e1.
Circulating microRNAs as potential biomarkers for endometriosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXktlyjt78%3D&md5=26a050aa8de6d0ba5c135211532b7e88CAS |

Cross, J. C., Werb, Z., and Fisher, S. J. (1994). Implantation and the placenta: key pieces of the development puzzle. Science 266, 1508–1518.
Implantation and the placenta: key pieces of the development puzzle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisVGmu78%3D&md5=1991af0a96adba757d11c79b275134d8CAS |

da Silveira, J. C., Veeramachaneni, D. N., Winger, Q. A., Carnevale, E. M., and Bouma, G. J. (2012). Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol. Reprod. 86, 71.
Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle.Crossref | GoogleScholarGoogle Scholar |

Dai, Y., Qiu, Z., Diao, Z., Shen, L., Xue, P., Sun, H., and Hu, Y. (2012). MicroRNA-155 inhibits proliferation and migration of human extravillous trophoblast derived HTR-8/SVneo cells via down-regulating cyclin D1. Placenta 33, 824–829.
MicroRNA-155 inhibits proliferation and migration of human extravillous trophoblast derived HTR-8/SVneo cells via down-regulating cyclin D1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlamtrjM&md5=a2966da5d1fec1b5cbc9a15a91ad3db5CAS |

Dai, A., Sun, H., Fang, T., Zhang, Q., Wu, S., Jiang, Y., Ding, L., Yan, G., and Hu, Y. (2013). MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett. 587, 2474–2482.
MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKnsLrF&md5=14d07c5d2825933027c2abb66477fda0CAS |

Diez-Fraile, A., Lammens, T., Tilleman, K., Witkowski, W., Verhasselt, B., de Sutter, P., Benoit, Y., Espeel, M., and D’Herde, K. (2014). Age-associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization. Hum. Fertil. (Camb.) 17, 90–98.
Age-associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptlyrt7o%3D&md5=3181c997e63dbeed8024d54700b7cec8CAS |

Duley, L. (2009). The global impact of pre-eclampsia and eclampsia. Semin. Perinatol. 33, 130–137.
The global impact of pre-eclampsia and eclampsia.Crossref | GoogleScholarGoogle Scholar |

Dumesic, D. A., and Abbott, D. H. (2008). Implications of polycystic ovary syndrome on oocyte development. Semin. Reprod. Med. 26, 53–61.
Implications of polycystic ovary syndrome on oocyte development.Crossref | GoogleScholarGoogle Scholar |

Enquobahrie, D. A., Abetew, D. F., Sorensen, T. K., Willoughby, D., Chidambaram, K., and Williams, M. A. (2011). Placental microRNA expression in pregnancies complicated by preeclampsia. Am. J. Obstet. Gynecol. 204, 178.e12–178.e21.
Placental microRNA expression in pregnancies complicated by preeclampsia.Crossref | GoogleScholarGoogle Scholar |

Farquhar, C. M. (2005). Ectopic pregnancy. Lancet 366, 583–591.
Ectopic pregnancy.Crossref | GoogleScholarGoogle Scholar |

Forbes, K., Farrokhnia, F., Aplin, J. D., and Westwood, M. (2012). Dicer-dependent miRNAs provide an endogenous restraint on cytotrophoblast proliferation. Placenta 33, 581–585.
Dicer-dependent miRNAs provide an endogenous restraint on cytotrophoblast proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1yguro%3D&md5=b02be36d0e5a3f4f6c9f7d6396e71bcfCAS |

Foshay, K. M., and Gallicano, G. I. (2009). miR-17 family miRNAs are expressed during early mammalian development and regulate stem cell differentiation. Dev. Biol. 326, 431–443.
miR-17 family miRNAs are expressed during early mammalian development and regulate stem cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlKgsbs%3D&md5=b70aa8b55c5b3347f6c288a735979fe8CAS |

Franks, S. (2008). Polycystic ovary syndrome in adolescents. Int. J. Obes. (Lond.) 32, 1035–1041.
Polycystic ovary syndrome in adolescents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVaku7c%3D&md5=71eb81cdd51faa83c247c71b780a0d50CAS |

Fu, G., Ye, G., Nadeem, L., Ji, L., Manchanda, T., Wang, Y., Zhao, Y., Qiao, J., Wang, Y.-L., Lye, S., Yang, B. B., and Peng, C. (2013). MicroRNA-376c impairs transforming growth factor-beta and nodal signaling to promote trophoblast cell proliferation and invasion. Hypertension 61, 864–872.
MicroRNA-376c impairs transforming growth factor-beta and nodal signaling to promote trophoblast cell proliferation and invasion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktVGnt74%3D&md5=d3746af53e5358b988d567f7e503d7e5CAS |

Gebremedhn, S., Salilew-Wondim, D., Ahmad, I., Sahadevan, S., Hossain, M. M., Hoelker, M., Rings, F., Neuhoff, C., Tholen, E., Looft, C., Schellander, K., and Tesfaye, D. (2015). MicroRNA expression profile in bovine granulosa cells of preovulatory dominant and subordinate follicles during the late follicular phase of the estrous cycle. PLoS One 10, e0125912.
MicroRNA expression profile in bovine granulosa cells of preovulatory dominant and subordinate follicles during the late follicular phase of the estrous cycle.Crossref | GoogleScholarGoogle Scholar |

Gebremedhn, S., Salilew-Wondim, D., Hoelker, M., Rings, F., Neuhoff, C., Tholen, E., Schellander, K., and Tesfaye, D. (2016). MicroRNA-183-96-182 cluster regulate bovine granulosa cell proliferation and cell cycle transition by coordinately targeting FOXO1. Biol. Reprod. 94, 127.
MicroRNA-183-96-182 cluster regulate bovine granulosa cell proliferation and cell cycle transition by coordinately targeting FOXO1.Crossref | GoogleScholarGoogle Scholar |

Geng, Y., He, J., Ding, Y., Chen, X., Zhou, Y., Liu, S., Liu, X., and Wang, Y. (2014). The differential expression of microRNAs between implantation sites and interimplantation sites in early pregnancy in mice and their potential functions. Reprod. Sci. 21, 1296–1306.
The differential expression of microRNAs between implantation sites and interimplantation sites in early pregnancy in mice and their potential functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXisFSksbc%3D&md5=542ad28b657b73c25d70b23038fb5075CAS |

Gilad, S., Meiri, E., Yogev, Y., Benjamin, S., Lebanony, D., Yerushalmi, N., Benjamin, H., Kushnir, M., Cholakh, H., Melamed, N., Bentwich, Z., Hod, M., Goren, Y., and Chajut, A. (2008). Serum microRNAs are promising novel biomarkers. PLoS One 3, e3148.
Serum microRNAs are promising novel biomarkers.Crossref | GoogleScholarGoogle Scholar |

Gilchrist, G. C., Tscherner, A., Nalpathamkalam, T., Merico, D., and LaMarre, J. (2016). MicroRNA expression during bovine oocyte maturation and fertilization. Int. J. Mol. Sci. 17, 396.
MicroRNA expression during bovine oocyte maturation and fertilization.Crossref | GoogleScholarGoogle Scholar |

Giraldez, A. J., Mishima, Y., Rihel, J., Grocock, R. J., van Dongen, S., Inoue, K., Enright, A. J., and Schier, A. F. (2006). Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79.
Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtFalsbo%3D&md5=b298e308af1f1675d908d02252ba6732CAS |

Goossens, K., Mestdagh, P., Lefever, S., van Poucke, M., van Zeveren, A., van Soom, A., Vandesompele, J., and Peelman, L. (2013). Regulatory microRNA network identification in bovine blastocyst development. Stem Cells Dev. 22, 1907–1920.
Regulatory microRNA network identification in bovine blastocyst development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpslCiu7Y%3D&md5=5ab005a937afe04daba24621d01c4bf3CAS |

Gu, Y., Sun, J., Groome, L. J., and Wang, Y. (2013). Differential miRNA expression profiles between the first and third trimester human placentas. Am. J. Physiol. Endocrinol. Metab. 304, E836–E843.
Differential miRNA expression profiles between the first and third trimester human placentas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntlGqtLg%3D&md5=28d9f734c0a32fb3d5f8f21bd1380d58CAS |

Hamatani, T., Ko, M. S. h., Yamada, M., Kuji, N., Mizusawa, Y., Shoji, M., Hada, T., Asada, H., Maruyama, T., and Yoshimura, Y. (2006). Global gene expression profiling of preimplantation embryos. Hum. Cell. 19, 98–117.

Hammon, D. S., Evjen, I. M., Dhiman, T. R., Goff, J. P., and Walters, J. L. (2006). Neutrophil function and energy status in Holstein cows with uterine health disorders. Vet. Immunol. Immunopathol. 113, 21–29.
Neutrophil function and energy status in Holstein cows with uterine health disorders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xns1Sktr4%3D&md5=707af7d86b4d015add4facb3ee616d13CAS |

Haraguchi, H., Saito-Fujita, T., Hirota, Y., Egashira, M., Matsumoto, L., Matsuo, M., Hiraoka, T., Koga, K., Yamauchi, N., Fukayama, M., Bartos, A., Cha, J., Dey, S. K., Fujii, T., and Osuga, Y. (2014). MicroRNA-200a locally attenuates progesterone signaling in the cervix, preventing embryo implantation. Mol. Endocrinol. 28, 1108–1117.
MicroRNA-200a locally attenuates progesterone signaling in the cervix, preventing embryo implantation.Crossref | GoogleScholarGoogle Scholar |

Hasegawa, A., Kumamoto, K., Mochida, N., Komori, S., and Koyama, K. (2009). Gene expression profile during ovarian folliculogenesis. J. Reprod. Immunol. 83, 40–44.
| 1:CAS:528:DC%2BD1MXhsVyntrrM&md5=df4d77d426e83f522347df79739671c8CAS |

Hayashi, K., Chuva de Sousa Lopes, S. M., Kaneda, M., Tang, F., Hajkova, P., Lao, K., O’Carroll, D., Das, P. P., Tarakhovsky, A., Miska, E. A., and Surani, M. A. (2008). MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 3, e1738.
MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis.Crossref | GoogleScholarGoogle Scholar |

Högberg, U. (2005). The World Health Report 2005: ‘make every mother and child count’ – including Africans. Scand. J. Public Health 33, 409–411.
The World Health Report 2005: ‘make every mother and child count’ – including Africans.Crossref | GoogleScholarGoogle Scholar |

Holmgren, L., Szeles, A., Rajnavölgyi, E., Folkman, J., Klein, G., Ernberg, I., and Falk, K. I. (1999). Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood 93, 3956–3963.
| 1:CAS:528:DyaK1MXjsVOnt7c%3D&md5=fc79f59008bd562091a887ea8aa9f43dCAS |

Hossain, M. M., Ghanem, N., Hoelker, M., Rings, F., Phatsara, C., Tholen, E., Schellander, K., and Tesfaye, D. (2009). Identification and characterization of miRNAs expressed in the bovine ovary. BMC Genomics 10, 443.
Identification and characterization of miRNAs expressed in the bovine ovary.Crossref | GoogleScholarGoogle Scholar |

Hossain, M. M., Cao, M., Wang, Q., Kim, J. Y., Schellander, K., Tesfaye, D., and Tsang, B. K. (2013). Altered expression of miRNAs in a dihydrotestosterone-induced rat PCOS model. J. Ovarian Res. 6, 36.
Altered expression of miRNAs in a dihydrotestosterone-induced rat PCOS model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVems7fJ&md5=580dc6241cefc223c176b7144ca411a2CAS |

Hossain, M. M., Tesfaye, D., Salilew-Wondim, D., Held, E., Proll, M. J., Rings, F., Kirfel, G., Looft, C., Tholen, E., Uddin, J., Schellander, K., and Hoelker, M. (2014). Massive deregulation of miRNAs from nuclear reprogramming errors during trophoblast differentiation for placentogenesis in cloned pregnancy. BMC Genomics 15, 43.
Massive deregulation of miRNAs from nuclear reprogramming errors during trophoblast differentiation for placentogenesis in cloned pregnancy.Crossref | GoogleScholarGoogle Scholar |

Hu, S.-J., Ren, G., Liu, J.-L., Zhao, Z.-A., Yu, Y.-S., Su, R.-W., Ma, X.-H., Ni, H., Lei, W., and Yang, Z.-M. (2008). MicroRNA expression and regulation in mouse uterus during embryo implantation. J. Biol. Chem. 283, 23 473–23 484.
MicroRNA expression and regulation in mouse uterus during embryo implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFGgt7o%3D&md5=b8d463ba5f0731e971c31823a22098bbCAS |

Huang, X., Liu, C., Hao, C., Tang, Q., Liu, R., Lin, S., Zhang, L., and Yan, W. (2016). Identification of altered microRNAs and mRNAs in the cumulus cells of PCOS patients: miRNA-509-3p promotes oestradiol secretion by targeting MAP3K8. Reproduction 151, 643–655.
Identification of altered microRNAs and mRNAs in the cumulus cells of PCOS patients: miRNA-509-3p promotes oestradiol secretion by targeting MAP3K8.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslaqurvP&md5=0951513deaf50d7dde48d9455d4f3a06CAS |

Hunt, P. A., and Hassold, T. J. (2008). Human female meiosis: what makes a good egg go bad? Trends Genet. 24, 86–93.
Human female meiosis: what makes a good egg go bad?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGmtr8%3D&md5=7f112f2534784602a82218d6c4929d42CAS |

Hunter, M.P., Ismail, N., Zhang, X., Aguda, B.D., Lee, E.J., Yu, L., Xiao, T., Schafer, J., Lee, M. L, Schmittgen, T. D., Nana-Sinkam, S. P., Jarjoura, D., and Marsh, C. B. (2008). Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 3, e3694.
Detection of microRNA expression in human peripheral blood microvesicles.Crossref | GoogleScholarGoogle Scholar |

Inyawilert, W., Fu, T.-Y., Lin, C.-T., and Tang, P.-C. (2015). Let-7-mediated suppression of mucin 1 expression in the mouse uterus during embryo implantation. J. Reprod. Dev. 61, 138–144.
Let-7-mediated suppression of mucin 1 expression in the mouse uterus during embryo implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXosFSqsbo%3D&md5=a65bc420c22c47a755258eda2225219fCAS |

Ioannidis, J., and Donadeu, F. X. (2016). Circulating miRNA signatures of early pregnancy in cattle. BMC Genomics 17, 184.
Circulating miRNA signatures of early pregnancy in cattle.Crossref | GoogleScholarGoogle Scholar |

Iwasaki, Y. W., and Siomi, H. (2014). miRNA regulatory ecosystem in early development. Mol. Cell 56, 615–616.
miRNA regulatory ecosystem in early development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFOrtLvL&md5=38601877a030ae5a49fb161f0b8c0289CAS |

Jiang, Z., Sun, J., Dong, H., Luo, O., Zheng, X., Obergfell, C., Tang, Y., Bi, J., O’Neill, R., Ruan, Y., Chen, J., and Tian, X. C. (2014). Transcriptional profiles of bovine in vivo pre-implantation development. BMC Genomics 15, 756.
Transcriptional profiles of bovine in vivo pre-implantation development.Crossref | GoogleScholarGoogle Scholar |

Kaneda, M., Tang, F., O’Carroll, D., Lao, K., and Surani, M. A. (2009). Essential role for Argonaute2 protein in mouse oogenesis. Epigenetics Chromatin 2, 9.
Essential role for Argonaute2 protein in mouse oogenesis.Crossref | GoogleScholarGoogle Scholar |

Kang, Y.-J., Lees, M., Matthews, L. C., Kimber, S. J., Forbes, K., and Aplin, J. D. (2015). MiR-145 suppresses embryo–epithelial juxtacrine communication at implantation by modulating maternal IGF1R. J. Cell Sci. 128, 804–814.
MiR-145 suppresses embryo–epithelial juxtacrine communication at implantation by modulating maternal IGF1R.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtlSitr8%3D&md5=abfa3d86ddeac109450ef1306fa72f24CAS |

Khan, H. A., Zhao, Y., Wang, L., Li, Q., Du, Y.-A., Dan, Y., and Huo, L.-J. (2015). Identification of miRNAs during mouse postnatal ovarian development and superovulation. J. Ovarian Res. 8, 44.
Identification of miRNAs during mouse postnatal ovarian development and superovulation.Crossref | GoogleScholarGoogle Scholar |

Kim, S. I., Shin, D., Choi, T. H., Lee, J. C., Cheon, G.-J., Kim, K.-Y., Park, M., and Kim, M. (2007). Systemic and specific delivery of small interfering RNAs to the liver mediated by apolipoprotein A-I. Mol. Ther. 15, 1145–1152.
Systemic and specific delivery of small interfering RNAs to the liver mediated by apolipoprotein A-I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVejtrzO&md5=c465a8e1a45a9850b6cace937361e676CAS |

Kim, Y. J., Ku, S. Y., Kim, Y. Y., Liu, H. C., Chi, S. W., Kim, S. H., Choi, Y. M., Kim, J. G., and Moon, S. Y. (2013). MicroRNAs transfected into granulosa cells may regulate oocyte meiotic competence during in vitro maturation of mouse follicles. Hum. Reprod. 28, 3050–3061.
MicroRNAs transfected into granulosa cells may regulate oocyte meiotic competence during in vitro maturation of mouse follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Wgt7rN&md5=c3c64f81f65f41d6e4d8ba098e751bfeCAS |

Kropp, J., and Khatib, H. (2015). Characterization of microRNA in bovine in vitro culture media associated with embryo quality and development. J. Dairy Sci. 98, 6552–6563.
Characterization of microRNA in bovine in vitro culture media associated with embryo quality and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFehsL7P&md5=8ba33dce67938c37af37c51541d4d11bCAS |

Kropp, J., Salih, S. M., and Khatib, H. (2014). Expression of microRNAs in bovine and human pre-implantation embryo culture media. Front. Genet. 5, 91.

Kumar, M., Ahmad, T., Sharma, A., Mabalirajan, U., Kulshreshtha, A., Agrawal, A., and Ghosh, B. (2011). Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. J. Allergy Clin. Immunol. 128, 1077–1085.e1–10.
Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyktr3E&md5=404561a98d05ca3e856c630707252b39CAS |

Laudanski, P., Charkiewicz, R., Kuzmicki, M., Szamatowicz, J., Charkiewicz, A., and Niklinski, J. (2013). MicroRNAs expression profiling of eutopic proliferative endometrium in women with ovarian endometriosis. Reprod. Biol. Endocrinol. 11, 78.
MicroRNAs expression profiling of eutopic proliferative endometrium in women with ovarian endometriosis.Crossref | GoogleScholarGoogle Scholar |

Laudanski, P., Charkiewicz, R., Tolwinska, A., Szamatowicz, J., Charkiewicz, A., and Niklinski, J. (2015). Profiling of selected MicroRNAs in proliferative eutopic endometrium of women with ovarian endometriosis. BioMed Res. Int. 2015, 760698.
Profiling of selected MicroRNAs in proliferative eutopic endometrium of women with ovarian endometriosis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC283itFertw%3D%3D&md5=9efd3e6e5cc58c7321e170a7d35c2ab2CAS |

Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.
The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXpslGqtA%3D%3D&md5=80fa27d22d9f6fb2c80de531b93dc245CAS |

Lee, H., Kim, S. I., Shin, D., Yoon, Y., Choi, T. H., Cheon, G.-J., and Kim, M. (2009). Hepatic siRNA delivery using recombinant human apolipoprotein A-I in mice. Biochem. Biophys. Res. Commun. 378, 192–196.
Hepatic siRNA delivery using recombinant human apolipoprotein A-I in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOisLzK&md5=d0109e36ed06b464b98940c4b24a94d0CAS |

Lee, M., Choi, Y., Kim, K., Jin, H., Lim, J., Nguyen, T. A., Yang, J., Jeong, M., Giraldez, A. J., Yang, H., Patel, D. J., and Kim, V. N. (2014). Adenylation of maternally inherited microRNAs by Wispy. Mol. Cell 56, 696–707.
Adenylation of maternally inherited microRNAs by Wispy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFCnsbrO&md5=36186ab4452c4c47858ad10f000ca33dCAS |

Li, H., Ge, Q., Guo, L., and Lu, Z. (2013). Maternal plasma miRNAs expression in preeclamptic pregnancies. BioMed Res. Int. 2013, 970265.
Maternal plasma miRNAs expression in preeclamptic pregnancies.Crossref | GoogleScholarGoogle Scholar |

Li, Z., Jia, J., Gou, J., Zhao, X., and Yi, T. (2015). MicroRNA-451 plays a role in murine embryo implantation through targeting Ankrd46, as implicated by a microarray-based analysis. Fertil. Steril. 103, 834–844.e4.
MicroRNA-451 plays a role in murine embryo implantation through targeting Ankrd46, as implicated by a microarray-based analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjs1SrtL4%3D&md5=d058cce217300aee203b96edd13cad3fCAS |

Liu, H. C., Tang, Y., He, Z., and Rosenwaks, Z. (2010). Dicer is a key player in oocyte maturation. J. Assist. Reprod. Genet. 27, 571–580.
Dicer is a key player in oocyte maturation.Crossref | GoogleScholarGoogle Scholar |

Liu, W. M., Pang, R. T., Cheong, A. W., Ng, E. H., Lao, K., Lee, K. F., and Yeung, W. S. (2012). Involvement of microRNA lethal-7a in the regulation of embryo implantation in mice. PLoS One 7, e37039.
Involvement of microRNA lethal-7a in the regulation of embryo implantation in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFaitrw%3D&md5=6a34b8e22bf0ca5af8ca495549559933CAS |

Liu, S., Zhang, X., Shi, C., Lin, J., Chen, G., Wu, B., Wu, L., Shi, H., Yuan, Y., Zhou, W., Sun, Z., Dong, X., and Wang, J. (2015). Altered microRNAs expression profiling in cumulus cells from patients with polycystic ovary syndrome. J. Transl. Med. 13, 238.
Altered microRNAs expression profiling in cumulus cells from patients with polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar |

Luo, S.-S., Ishibashi, O., Ishikawa, G., Ishikawa, T., Katayama, A., Mishima, T., Takizawa, T., Shigihara, T., Goto, T., Izumi, A., Ohkuchi, A., Matsubara, S., Takeshita, T., and Takizawa, T. (2009). Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol. Reprod. 81, 717–729.
Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyhsLnP&md5=ec8685c9c0621345b4b3fd2adb0edb22CAS |

Luo, L., Ye, G., Nadeem, L., Fu, G., Yang, B. B., Honarparvar, E., Dunk, C., Lye, S., and Peng, C. (2012). MicroRNA-378a-5p promotes trophoblast cell survival, migration and invasion by targeting Nodal. J. Cell Sci. 125, 3124–3132.
MicroRNA-378a-5p promotes trophoblast cell survival, migration and invasion by targeting Nodal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKiurnF&md5=b592cc099a479cfbeb2dae912047081cCAS |

Mar-Aguilar, F., Mendoza-Ramírez, J. A., Malagón-Santiago, I., Espino-Silva, P. K., Santuario-Facio, S. K., Ruiz-Flores, P., Rodríguez-Padilla, C., and Reséndez-Pérez, D. (2013). Serum circulating microRNA profiling for identification of potential breast cancer biomarkers. Dis. Markers 34, 163–169.
Serum circulating microRNA profiling for identification of potential breast cancer biomarkers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1Wnu7s%3D&md5=a9e0c99b035a55f58e385d456269b2b7CAS |

Mayor-Lynn, K., Toloubeydokhti, T., Cruz, A. C., and Chegini, N. (2011). Expression profile of microRNAs and mRNAs in human placentas from pregnancies complicated by preeclampsia and preterm labor. Reprod. Sci. 18, 46–56.
Expression profile of microRNAs and mRNAs in human placentas from pregnancies complicated by preeclampsia and preterm labor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvV2iug%3D%3D&md5=9bfa0a1875e042e20d68a8ef6aee7f9aCAS |

McCallie, B., Schoolcraft, W. B., and Katz-Jaffe, M. G. (2010). Aberration of blastocyst microRNA expression is associated with human infertility. Fertil. Steril. 93, 2374–2382.
Aberration of blastocyst microRNA expression is associated with human infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1ylsbk%3D&md5=26c200adf39fba0c49e7dfc9d2962988CAS |

McGee, E. A., and Hsueh, A. J. (2000). Initial and cyclic recruitment of ovarian follicles. Endocr. Rev. 21, 200–214.
Initial and cyclic recruitment of ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3ksVahsw%3D%3D&md5=8f84e11125e8971773b1655663a30badCAS |

Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., Peterson, A., Noteboom, J., O’Briant, K. C., Allen, A., Lin, D. W., Urban, N., Drescher, C. W., Knudsen, B. S., Stirewalt, D. L., Gentleman, R., Vessella, R. L., Nelson, P. S., Martin, D. B., and Tewari, M. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10 513–10 518.
Circulating microRNAs as stable blood-based markers for cancer detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVCltL0%3D&md5=3c9b50cc67f3531e461417b5af500b03CAS |

Miura, K., Miura, S., Yamasaki, K., Higashijima, A., Kinoshita, A., Yoshiura, K.-i., and Masuzaki, H. (2010). Identification of pregnancy-associated microRNAs in maternal plasma. Clin. Chem. 56, 1767–1771.
Identification of pregnancy-associated microRNAs in maternal plasma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWqurbO&md5=9560600ad3382b813a36684b2e97b100CAS |

Miura, K., Higashijima, A., Mishima, H., Miura, S., Kitajima, M., Kaneuchi, M., Yoshiura, K.-i., and Masuzaki, H. (2015). Pregnancy-associated microRNAs in plasma as potential molecular markers of ectopic pregnancy. Fertil. Steril. 103, 1202–1208.e1.
Pregnancy-associated microRNAs in plasma as potential molecular markers of ectopic pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXktlyjt74%3D&md5=c3cc64bae0b7ff36c437e50bee75e71eCAS |

Miura, K., Higashijima, A., Murakami, Y., Fuchi, N., Tsukamoto, O., Abe, S., Hasegawa, Y., Miura, S., and Masuzaki, H. (2016). Circulating levels of pregnancy-associated, placenta-specific microRNAs in pregnant women with placental abruption. Reprod. Sci. , .
Circulating levels of pregnancy-associated, placenta-specific microRNAs in pregnant women with placental abruption.Crossref | GoogleScholarGoogle Scholar |

Mondou, E., Dufort, I., Gohin, M., Fournier, E., and Sirard, M. A. (2012). Analysis of microRNAs and their precursors in bovine early embryonic development. Mol. Hum. Reprod. 18, 425–434.
Analysis of microRNAs and their precursors in bovine early embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWmur3L&md5=e86b0dfd9006ee489f2c4ec366f4159dCAS |

Morales-Prieto, D. M., Schleussner, E., and Markert, U. R. (2011). Reduction in miR-141 is induced by leukemia inhibitory factor and inhibits proliferation in choriocarcinoma cell line JEG-3. Am. J. Reprod. Immunol. 66, 57–62.
Reduction in miR-141 is induced by leukemia inhibitory factor and inhibits proliferation in choriocarcinoma cell line JEG-3.Crossref | GoogleScholarGoogle Scholar |

Morales-Prieto, D. M., Ospina-Prieto, S., Chaiwangyen, W., Schoenleben, M., and Markert, U. R. (2013). Pregnancy-associated miRNA-clusters. J. Reprod. Immunol. 97, 51–61.
Pregnancy-associated miRNA-clusters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFyltr0%3D&md5=eb4f6e9c31f909edcfcd27be3536fc1eCAS |

Morales-Prieto, D. M., Ospina-Prieto, S., Schmidt, A., Chaiwangyen, W., and Markert, U. R. (2014). Elsevier Trophoblast Research Award Lecture: origin, evolution and future of placenta miRNAs. Placenta 35, S39–S45.
Elsevier Trophoblast Research Award Lecture: origin, evolution and future of placenta miRNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtlartQ%3D%3D&md5=b733b36a9713ae92474835f631794235CAS |

Mouillet, J.-F., Chu, T., and Sadovsky, Y. (2011). Expression patterns of placental microRNAs. Birth Defects Res. A Clin. Mol. Teratol. 91, 737–743.
Expression patterns of placental microRNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVyhtbo%3D&md5=674595bbaa62e6ec86c309d190f74e3eCAS |

Muggenhumer, D., Vesely, C., Nimpf, S., Tian, N., Yongfeng, J., and Jantsch, M. F. (2014). Drosha protein levels are translationally regulated during Xenopus oocyte maturation. Mol. Biol. Cell 25, 2094–2104.
Drosha protein levels are translationally regulated during Xenopus oocyte maturation.Crossref | GoogleScholarGoogle Scholar |

Murchison, E. P., Stein, P., Xuan, Z., Pan, H., Zhang, M. Q., Schultz, R. M., and Hannon, G. J. (2007). Critical roles for Dicer in the female germline. Genes Dev. 21, 682–693.
Critical roles for Dicer in the female germline.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1WqsbY%3D&md5=095d6c869b56aa9b3ec7030992644fa3CAS |

Nardozza, L. M., Araujo Júnior, E., Barbosa, M. M., Caetano, A. C., Lee, D. J., and Moron, A. F. (2012). Fetal growth restriction: current knowledge to the general Obs/Gyn. Arch. Gynecol. Obstet. 286, 1–13.
Fetal growth restriction: current knowledge to the general Obs/Gyn.Crossref | GoogleScholarGoogle Scholar |

Navakanitworakul, R., Hung, W.-T., Gunewardena, S., Davis, J. S., Chotigeat, W., and Christenson, L. K. (2016). Characterization and small RNA content of extracellular vesicles in follicular fluid of developing bovine antral follicles. Sci. Rep. 6, 25486.
Characterization and small RNA content of extracellular vesicles in follicular fluid of developing bovine antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnslWltLY%3D&md5=1041135d7f3d10ec6916e1bd2a78092eCAS |

Ng, Y. H., Rome, S., Jalabert, A., Forterre, A., Singh, H., Hincks, C. L., and Salamonsen, L. A. (2013). Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo–endometrial cross talk at implantation. PLoS One 8, e58502.
Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo–endometrial cross talk at implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXks1Wnsb0%3D&md5=c3b1e4a87a94bf068a5cce777fb94333CAS |

Noferesti, S. S., Sohel, M. M., Hoelker, M., Salilew-Wondim, D., Tholen, E., Looft, C., Rings, F., Neuhoff, C., Schellander, K., and Tesfaye, D. (2015). Controlled ovarian hyperstimulation induced changes in the expression of circulatory miRNA in bovine follicular fluid and blood plasma. J. Ovarian Res. 8, 81.
Controlled ovarian hyperstimulation induced changes in the expression of circulatory miRNA in bovine follicular fluid and blood plasma.Crossref | GoogleScholarGoogle Scholar |

Noguer-Dance, M., Abu-Amero, S., Al-Khtib, M., Lefevre, A., Coullin, P., Moore, G. E., and Cavaille, J. (2010). The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum. Mol. Genet. 19, 3566–3582.
The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVylsbzN&md5=fb11b3e310b9162b20ad8fd9d6c552b2CAS |

North, R. A., McCowan, L. M., Dekker, G. A., Poston, L., Chan, E. H., Stewart, A. W., Black, M. A., Taylor, R. S., Walker, J. J., Baker, P. N., and Kenny, L. C. (2011). Clinical risk prediction for pre-eclampsia in nulliparous women: development of model in international prospective cohort. BMJ 342, d1875.
Clinical risk prediction for pre-eclampsia in nulliparous women: development of model in international prospective cohort.Crossref | GoogleScholarGoogle Scholar |

Ouyang, Y., Mouillet, J.-F., Coyne, C. B., and Sadovsky, Y. (2014). Review: placenta-specific microRNAs in exosomes – good things come in nano-packages. Placenta 35, S69–S73.
Review: placenta-specific microRNAs in exosomes – good things come in nano-packages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKjurrK&md5=8f7ef0418788fee2442df1a3b2bcb957CAS |

Pan, B., Toms, D., Shen, W., and Li, J. (2015). MicroRNA-378 regulates oocyte maturation via the suppression of aromatase in porcine cumulus cells. Am. J. Physiol. Endocrinol. Metab. 308, E525–E534.
MicroRNA-378 regulates oocyte maturation via the suppression of aromatase in porcine cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXls1CrtLY%3D&md5=a5426fd7e0de22a29e48fd888276bac1CAS |

Pineles, B. L., Romero, R., Montenegro, D., Tarca, A. L., Han, Y. M., Kim, Y. M., Draghici, S., Espinoza, J., Kusanovic, J. P., Mittal, P., Hassan, S. S., and Kim, C. J. (2007). Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am. J. Obstet. Gynecol. 196, 261.e1–261.e6.
Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia.Crossref | GoogleScholarGoogle Scholar |

Polsani, S., Phipps, E., and Jim, B. (2013). Emerging new biomarkers of preeclampsia. Adv. Chronic Kidney Dis. 20, 271–279.
Emerging new biomarkers of preeclampsia.Crossref | GoogleScholarGoogle Scholar |

Ponsuksili, S., Tesfaye, D., Schellander, K., Hoelker, M., Hadlich, F., Schwerin, M., and Wimmers, K. (2014). Differential expression of miRNAs and their target mRNAs in endometria prior to maternal recognition of pregnancy associates with endometrial receptivity for in vivo- and in vitro-produced bovine embryos. Biol. Reprod. 91, 135.
Differential expression of miRNAs and their target mRNAs in endometria prior to maternal recognition of pregnancy associates with endometrial receptivity for in vivo- and in vitro-produced bovine embryos.Crossref | GoogleScholarGoogle Scholar |

Primakoff, P., and Myles, D. G. (2002). Penetration, adhesion, and fusion in mammalian sperm–egg interaction. Science 296, 2183–2185.
Penetration, adhesion, and fusion in mammalian sperm–egg interaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFGhsbo%3D&md5=deeb60419754c298a096f56e6412c1f4CAS |

Reese, J., Das, S. K., Paria, B. C., Lim, H., Song, H., Matsumoto, H., Knudtson, K. L., DuBois, R. N., and Dey, S. K. (2001). Global gene expression analysis to identify molecular markers of uterine receptivity and embryo implantation. J. Biol. Chem. 276, 44137–44145.
| 1:STN:280:DC%2BD3MnnvFGhsQ%3D%3D&md5=d1eda6d725001942e6e4789d076a710bCAS |

Revel, A., Achache, H., Stevens, J., Smith, Y., and Reich, R. (2011). MicroRNAs are associated with human embryo implantation defects. Hum. Reprod. 26, 2830–2840.
MicroRNAs are associated with human embryo implantation defects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1SiurzN&md5=003a273c5661bca304366c0091853052CAS |

Revelli, A., Delle Piane, L., Casano, S., Molinari, E., Massobrio, M., and Rinaudo, P. (2009). Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod. Biol. Endocrinol. 7, 40.
Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics.Crossref | GoogleScholarGoogle Scholar |

Rolland, A. D., Lehmann, K. P., Johnson, K. J., Gaido, K. W., and Koopman, P. (2011). Uncovering gene regulatory networks during mouse fetal germ cell development. Biol. Reprod. 84, 790–800.
Uncovering gene regulatory networks during mouse fetal germ cell development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFanu7k%3D&md5=db2793de4a49085224c7acf7fa08114cCAS |

Sagata, N. (1996). Meiotic metaphase arrest in animal oocytes: its mechanisms and biological significance. Trends Cell Biol. 6, 22–28.
Meiotic metaphase arrest in animal oocytes: its mechanisms and biological significance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1Gisb4%3D&md5=ca65dbf77fe1708f42fc96f1c51791dfCAS |

Salilew-Wondim, D., Schellander, K., Hoelker, M., and Tesfaye, D. (2012). Oviductal, endometrial and embryonic gene expression patterns as molecular clues for pregnancy establishment. Anim. Reprod. Sci. 134, 9–18.
Oviductal, endometrial and embryonic gene expression patterns as molecular clues for pregnancy establishment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1KjtbnK&md5=779bc03c0dfe15842ee52565f5139395CAS |

Salilew-Wondim, D., Ahmad, I., Gebremedhn, S., Sahadevan, S., Hossain, M. D., Rings, F., Hoelker, M., Tholen, E., Neuhoff, C., Looft, C., Schellander, K., and Tesfaye, D. (2014). The expression pattern of microRNAs in granulosa cells of subordinate and dominant follicles during the early luteal phase of the bovine estrous cycle. PLoS One 9, e106795.
The expression pattern of microRNAs in granulosa cells of subordinate and dominant follicles during the early luteal phase of the bovine estrous cycle.Crossref | GoogleScholarGoogle Scholar |

Salilew-Wondim, D., Wang, Q., Tesfaye, D., Schellander, K., Hoelker, M., Hossain, M. M., and Tsang, B. K. (2015). Polycystic ovarian syndrome is accompanied by repression of gene signatures associated with biosynthesis and metabolism of steroids, cholesterol and lipids. J. Ovarian Res. 8, 24.
Polycystic ovarian syndrome is accompanied by repression of gene signatures associated with biosynthesis and metabolism of steroids, cholesterol and lipids.Crossref | GoogleScholarGoogle Scholar |

Salilew-Wondim, D., Ibrahim, S., Gebremedhn, S., Tesfaye, D., Heppelmann, M., Bollwein, H., Pfarrer, C., Tholen, E., Neuhoff, C., Schellander, K., and Hoelker, M. (2016). Clinical and subclinical endometritis induced alterations in bovine endometrial transcriptome and miRNome profile. BMC Genomics 17, 218.
Clinical and subclinical endometritis induced alterations in bovine endometrial transcriptome and miRNome profile.Crossref | GoogleScholarGoogle Scholar |

Sang, Q., Yao, Z., Wang, H., Feng, R., Wang, H., Zhao, X., Xing, Q., Jin, L., He, L., Wu, L., and Wang, L. (2013). Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J. Clin. Endocrinol. Metab. 98, 3068–3079.
Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFChsr7K&md5=58c66727eaf5d389b3d12200d743be3eCAS |

Santamaria, X., and Taylor, H. (2014). MicroRNA and gynecological reproductive diseases. Fertil. Steril. 101, 1545–1551.
MicroRNA and gynecological reproductive diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvFGiurg%3D&md5=23740ed2f9b63319af45bfcb841e91ecCAS |

Sathyapalan, T., David, R., Gooderham, N. J., and Atkin, S. L. (2015). Increased expression of circulating miRNA-93 in women with polycystic ovary syndrome may represent a novel, non-invasive biomarker for diagnosis. Sci. Rep. 5, 16890.
Increased expression of circulating miRNA-93 in women with polycystic ovary syndrome may represent a novel, non-invasive biomarker for diagnosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVOqs73O&md5=b8b0a15cee549a16b636d85d32eaf134CAS |

Shaunik, A., Kulp, J., Appleby, D. H., Sammel, M. D., and Barnhart, K. T. (2011). Utility of dilation and curettage in the diagnosis of pregnancy of unknown location. Am. J. Obstet. Gynecol. 204, 130.e1–130.e6.
Utility of dilation and curettage in the diagnosis of pregnancy of unknown location.Crossref | GoogleScholarGoogle Scholar |

Shen, L.-J., He, J.-L., Yang, D.-H., Ding, Y.-B., Chen, X.-M., Geng, Y.-Q., Liu, S.-J., Liu, X.-Q., and Wang, Y.-X. (2013). Mmu-microRNA-200a overexpression leads to implantation defect by targeting phosphatase and tensin homolog in mouse uterus. Reprod. Sci. 20, 1518–1528.
Mmu-microRNA-200a overexpression leads to implantation defect by targeting phosphatase and tensin homolog in mouse uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslWgtLvM&md5=c4b8733b24568b35207de31ecb8dd23aCAS |

Shi, L., Liu, S., Zhao, W., and Shi, J. (2015). miR-483-5p and miR-486-5p are down-regulated in cumulus cells of metaphase II oocytes from women with polycystic ovary syndrome. Reprod. Biomed. Online 31, 565–572.
miR-483-5p and miR-486-5p are down-regulated in cumulus cells of metaphase II oocytes from women with polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtF2kur3K&md5=64a4a03077a9ccd40b7bbcdd25ec92a9CAS |

Sibai, B., Dekker, G., and Kupferminc, M. (2005). Pre-eclampsia. Lancet 365, 785–799.
Pre-eclampsia.Crossref | GoogleScholarGoogle Scholar |

Sirotkin, A. V., Ovcharenko, D., Grossmann, R., Laukova, M., and Mlyncek, M. (2009). Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J. Cell. Physiol. 219, 415–420.
Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVWjsLk%3D&md5=60919e83ad59bdb21beb42487f45dd56CAS |

Sohel, M. M., Hoelker, M., Noferesti, S. S., Salilew-Wondim, D., Tholen, E., Looft, C., Rings, F., Uddin, M. J., Spencer, T. E., Schellander, K., and Tesfaye, D. (2013). Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence. PLoS One 8, e78505.
Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGisLjJ&md5=48d1c73f7d3de8b6134d507fb2898365CAS |

Sontakke, S. D., Mohammed, B. T., McNeilly, A. S., and Donadeu, F. X. (2014). Characterization of microRNAs differentially expressed during bovine follicle development. Reproduction 148, 271–283.
Characterization of microRNAs differentially expressed during bovine follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVert7bP&md5=cd3307323a91325450880cabd7ac404fCAS |

Sordillo, L. M., Contreras, G. A., and Aitken, S. L. (2009). Metabolic factors affecting the inflammatory response of periparturient dairy cows. Anim. Health Res. Rev. 10, 53–63.
Metabolic factors affecting the inflammatory response of periparturient dairy cows.Crossref | GoogleScholarGoogle Scholar |

Suh, N., Baehner, L., Moltzahn, F., Melton, C., Shenoy, A., Chen, J., and Blelloch, R. (2010). MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr. Biol. 20, 271–277.
MicroRNA function is globally suppressed in mouse oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslSmurc%3D&md5=d47054c17d50e99c0888c11315e133bbCAS |

Swaminathan, S., Suzuki, K., Seddiki, N., Kaplan, W., Cowley, M. J., Hood, C. L., Clancy, J. L., Murray, D. D., Méndez, C., Gelgor, L., Anderson, B., Roth, N., Cooper, D. A., and Kelleher, A. D. (2012). Differential regulation of the Let-7 family of microRNAs in CD4+ T cells alters IL-10 expression. J. Immunol. 188, 6238–6246.
Differential regulation of the Let-7 family of microRNAs in CD4+ T cells alters IL-10 expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotFGrt78%3D&md5=96ae3102ae37a6ea3314575893d0d584CAS |

Tang, F., Kaneda, M., O’Carroll, D., Hajkova, P., Barton, S. C., Sun, Y. A., Lee, C., Tarakhovsky, A., Lao, K., and Surani, M. A. (2007). Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 21, 644–648.
Maternal microRNAs are essential for mouse zygotic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1Wqsbo%3D&md5=9885500f600ab48984068a02655fc7c3CAS |

Tang, Q., Wu, W., Xu, X., Huang, L., Gao, Q., Chen, H., Sun, H., Xia, Y., Sha, J., Wang, X., Chen, D., and Xu, Q. (2013). miR-141 contributes to fetal growth restriction by regulating PLAG1 expression. PLoS One 8, e58737.
miR-141 contributes to fetal growth restriction by regulating PLAG1 expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVKhs7w%3D&md5=df9d4eefc389e4c37f6c36caceba025bCAS |

Taylor, D. D., and Gercel-Taylor, C. (2008). MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 110, 13–21.
MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVOlu74%3D&md5=a7c0c994b6989447c2f1f3aee3a688b1CAS |

Tesfaye, D., Worku, D., Rings, F., Phatsara, C., Tholen, E., Schellander, K., and Hoelker, M. (2009). Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol. Reprod. Dev. 76, 665–677.
Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVaisLo%3D&md5=75cb7938c0f4fc5bd9d675f106c51f9bCAS |

Toni, F., Vincenti, L., Ricci, A., and Schukken, Y. H. (2015). Postpartum uterine diseases and their impacts on conception and days open in dairy herds in Italy. Theriogenology 84, 1206–1214.
Postpartum uterine diseases and their impacts on conception and days open in dairy herds in Italy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC28%2FmsVGjtA%3D%3D&md5=7223f5c3ac59748ae0224bc0a2ec5436CAS |

Torley, K. J., da Silveira, J. C., Smith, P., Anthony, R. V., Veeramachaneni, D. N., Winger, Q. A., and Bouma, G. J. (2011). Expression of miRNAs in ovine fetal gonads: potential role in gonadal differentiation. Reprod. Biol. Endocrinol. 9, 2.
Expression of miRNAs in ovine fetal gonads: potential role in gonadal differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1KksL4%3D&md5=d7e2a17ad23ac23ed7e6869e6aa45e5eCAS |

Toth, B., Lok, C. A., Böing, A., Diamant, M., van der Post, J. A., Friese, K., and Nieuwland, R. (2007). Microparticles and exosomes: impact on normal and complicated pregnancy. Am. J. Reprod. Immunol. 58, 389–402.
Microparticles and exosomes: impact on normal and complicated pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOhsrzJ&md5=0e75d8210c66f51a9ffb70f7ec59a3d3CAS |

Turchinovich, A., Weiz, L., Langheinz, A., and Burwinkel, B. (2011). Characterization of extracellular circulating microRNA. Nucleic Acids Res. 39, 7223–7233.
Characterization of extracellular circulating microRNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFehtr%2FE&md5=0a69c0081058cf10ac51a79c58455a38CAS |

Turchinovich, A., Weiz, L., and Burwinkel, B. (2012). Extracellular miRNAs: the mystery of their origin and function. Trends Biochem. Sci. 37, 460–465.
Extracellular miRNAs: the mystery of their origin and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12lt7jL&md5=e5f023c2aad783be4bf96a6327f534a9CAS |

Uyar, A., Torrealday, S., and Seli, E. (2013). Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil. Steril. 99, 979–997.
Cumulus and granulosa cell markers of oocyte and embryo quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlGnsLc%3D&md5=7a291a8663d085538abe9fa9951e76fcCAS |

Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., and Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659.
Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVSmtb8%3D&md5=4113d94658e54f2f7224f373d9e1348eCAS |

Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D., and Remaley, A. T. (2011). MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 13, 423–433.
MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktFWjsb4%3D&md5=b14b79d7b99e0b4bec2e41452bf66f62CAS |

Vilella, F., Moreno-Moya, J. M., Balaguer, N., Grasso, A., Herrero, M., Martinez, S., Marcilla, A., and Simon, C. (2015). Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome. Development 142, 3210–3221.
Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XksV2qs7o%3D&md5=1c797b60d773b8db4f921f70fafdb8f2CAS |

Viswanathan, S. R., Mermel, C. H., Lu, J., Lu, C. W., Golub, T. R., and Daley, G. Q. (2009). microRNA expression during trophectoderm specification. PLoS One 4, e6143.
microRNA expression during trophectoderm specification.Crossref | GoogleScholarGoogle Scholar |

Wang, W.-T., Zhao, Y.-N., Han, B.-W., Hong, S.-J., and Chen, Y.-Q. (2013). Circulating microRNAs identified in a genome-wide serum microRNA expression analysis as noninvasive biomarkers for endometriosis. J. Clin. Endocrinol. Metab. 98, 281–289.
Circulating microRNAs identified in a genome-wide serum microRNA expression analysis as noninvasive biomarkers for endometriosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsVOltA%3D%3D&md5=3d5a1f0bc0431f0be62fcce19ac14c09CAS |

Wang, S., Liu, J., Li, X., Ji, X., Zhang, J., Wang, Y., and Cui, S. (2016). MiR-125b regulates primordial follicle assembly by targeting activin receptor type 2a in neonatal mouse ovary. Biol. Reprod. 94, 83.
MiR-125b regulates primordial follicle assembly by targeting activin receptor type 2a in neonatal mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XovValsr0%3D&md5=5c5dd92d0ef362ebe6f1028a85a2cf94CAS |

Weber, J. A., Baxter, D. H., Zhang, S., Huang, D. Y., Huang, K. H., Lee, M. J., Galas, D. J., and Wang, K. (2010). The microRNA spectrum in 12 body fluids. Clin. Chem. 56, 1733–1741.
The microRNA spectrum in 12 body fluids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWqurnE&md5=767024f757ec2ac5130923d1a36c1753CAS |

Wu, L., Zhou, H., Lin, H., Qi, J., Zhu, C., Gao, Z., and Wang, H. (2012). Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies. Reproduction 143, 389–397.
Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFOqsb8%3D&md5=3776a7a2265e4d42019fea8fc86a415eCAS |

Wu, S., Sun, H., Zhang, Q., Jiang, Y., Fang, T., Cui, I., Yan, G., and Hu, Y. (2015). MicroRNA-132 promotes estradiol synthesis in ovarian granulosa cells via translational repression of Nurr1. Reprod. Biol. Endocrinol. 13, 94.
MicroRNA-132 promotes estradiol synthesis in ovarian granulosa cells via translational repression of Nurr1.Crossref | GoogleScholarGoogle Scholar |

Xia, H.-F., Jin, X.-H., Song, P.-P., Cui, Y., Liu, C.-M., and Ma, X. (2010). Temporal and spatial regulation of let-7a in the uterus during embryo implantation in the rat. J. Reprod. Dev. 56, 73–78.
Temporal and spatial regulation of let-7a in the uterus during embryo implantation in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVymtr4%3D&md5=737aecc532f168992b114a917d91196cCAS |

Xia, H.-F., Jin, X.-H., Cao, Z.-F., Hu, Y., and Ma, X. (2014). MicroRNA expression and regulation in the uterus during embryo implantation in rat. FEBS J. 281, 1872–1891.
MicroRNA expression and regulation in the uterus during embryo implantation in rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltF2ltro%3D&md5=996caf1bc3accd2f8c4cfca909814bc2CAS |

Xu, S., Linher-Melville, K., Yang, B. B., Wu, D., and Li, J. (2011a). Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology 152, 3941–3951.
Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVanu77E&md5=a59b98758b16ed2619a872a1f7e1b245CAS |

Xu, Y. W., Wang, B., Ding, C. H., Li, T., Gu, F., and Zhou, C. (2011b). Differentially expressed micoRNAs in human oocytes. J. Assist. Reprod. Genet. 28, 559–566.
Differentially expressed micoRNAs in human oocytes.Crossref | GoogleScholarGoogle Scholar |

Yáñez-Mó, M., Siljander, P. R.-M., Andreu, Z., Zavec, A. B., Borràs, F. E., Buzas, E. I., Buzas, K., Casal, E., Cappello, F., Carvalho, J., et al. (2015). Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 27066.
Biological properties of extracellular vesicles and their physiological functions.Crossref | GoogleScholarGoogle Scholar |

Yang, X., Zhou, Y., Peng, S., Wu, L., Lin, H.-Y., Wang, S., and Wang, H. (2012). Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of miR-23a in granulosa cell apoptosis. Reproduction 144, 235–244.
Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of miR-23a in granulosa cell apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Kksr7I&md5=333fe7ae4c506d2d4442489f582e95d9CAS |

Yang, S., Wang, S., Luo, A., Ding, T., Lai, Z., Shen, W., Ma, X., Cao, C., Shi, L., Jiang, J., Rong, F., Ma, L., Tian, Y., Du, X., Lu, Y., Li, Y., and Wang, S. (2013). Expression patterns and regulatory functions of microRNAs during the initiation of primordial follicle development in the neonatal mouse ovary. Biol. Reprod. 89, 126.
Expression patterns and regulatory functions of microRNAs during the initiation of primordial follicle development in the neonatal mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ShsL7K&md5=82f14d330a4420e4df50bd29b29d70bcCAS |

Yin, M., Wang, X., Yao, G., Lü, M., Liang, M., Sun, Y., and Sun, F. (2014). Transactivation of micrornA-320 by microRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins. J. Biol. Chem. 289, 18 239–18 257.
Transactivation of micrornA-320 by microRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVGjsL3L&md5=1491d874387fd53ec725de8560130f3aCAS |

Zernecke, A., Bidzhekov, K., Noels, H., Shagdarsuren, E., Gan, L., Denecke, B., Hristov, M., Köppel, T., Jahantigh, M. N., Lutgens, E., Wang, S., Olson, E. N., Schober, A., and Weber, C. (2009). Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci. Signal. 2, ra81.
Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection.Crossref | GoogleScholarGoogle Scholar |

Zhang, H., Jiang, X., Zhang, Y., Xu, B., Hua, J., Ma, T., Zheng, W., Sun, R., Shen, W., Cooke, H. J., Hao, Q., Qiao, J., and Shi, Q. (2014). microRNA 376a regulates follicle assembly by targeting Pcna in fetal and neonatal mouse ovaries. Reproduction 148, 43–54.
microRNA 376a regulates follicle assembly by targeting Pcna in fetal and neonatal mouse ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyrtrbP&md5=22c247d48301f4ffb003581a704b83afCAS |

Zhao, Z., Zhao, Q., Warrick, J., Lockwood, C. M., Woodworth, A., Moley, K. H., and Gronowski, A. M. (2012). Circulating miR-323-3p as a biomarker of ectopic pregnancy. Clin. Chem. 58, 896–905.
Circulating miR-323-3p as a biomarker of ectopic pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1eitL0%3D&md5=b0c05ca5f027f9669ade34133717a573CAS |

Zhu, X.-M., Han, T., Sargent, I. L., Yin, G.-W., and Yao, Y.-Q. (2009). Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. Am. J. Obstet. Gynecol. 200, 661.e1–661.e7.
Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFylurg%3D&md5=29cb280d348325099b84504f0778c585CAS |