Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Application of genome-editing systems to enhance available pig resources for agriculture and biomedicine

Kiho Lee A B , Kayla Farrell A and Kyungjun Uh A
+ Author Affiliations
- Author Affiliations

A Department of Animal and Poultry Sciences, Litton-Reaves Hall, Virginia Tech, Blacksburg, Virgina 24061, USA.

B Corresponding author. Email: kiholee@vt.edu

Reproduction, Fertility and Development 32(2) 40-49 https://doi.org/10.1071/RD19273
Published: 2 December 2019

Abstract

Traditionally, genetic engineering in the pig was a challenging task. Genetic engineering of somatic cells followed by somatic cell nuclear transfer (SCNT) could produce genetically engineered (GE) pigs carrying site-specific modifications. However, due to difficulties in engineering the genome of somatic cells and developmental defects associated with SCNT, a limited number of GE pig models were reported. Recent developments in genome-editing tools, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9 system, have markedly changed the effort and time required to produce GE pig models. The frequency of genetic engineering in somatic cells is now practical. In addition, SCNT is no longer essential in producing GE pigs carrying site-specific modifications, because direct injection of genome-editing systems into developing embryos introduces targeted modifications. To date, the CRISPR/Cas9 system is the most convenient, cost-effective, timely and commonly used genome-editing technology. Several applicable biomedical and agricultural pig models have been generated using the CRISPR/Cas9 system. Although the efficiency of genetic engineering has been markedly enhanced with the use of genome-editing systems, improvements are still needed to optimally use the emerging technology. Current and future advances in genome-editing strategies will have a monumental effect on pig models used in agriculture and biomedicine.

Additional keywords: genetic engineering.


References

Allenspach, E., and Torgerson, T. R. (2016). Autoimmunity and primary immunodeficiency disorders. J. Clin. Immunol. 36, 57–67.
Autoimmunity and primary immunodeficiency disorders.Crossref | GoogleScholarGoogle Scholar | 27210535PubMed |

Carey, K., Ryu, J., Uh, K., Lengi, A. J., Clark-Deener, S., Corl, B. A., and Lee, K. (2019). Frequency of off-targeting in genome edited pigs produced via direct injection of the CRISPR/Cas9 system into developing embryos. BMC Biotechnol. 19, 25.
Frequency of off-targeting in genome edited pigs produced via direct injection of the CRISPR/Cas9 system into developing embryos.Crossref | GoogleScholarGoogle Scholar | 31060546PubMed |

Carlson, D. F., Tan, W., Lillico, S. G., Stverakova, D., Proudfoot, C., Christian, M., Voytas, D. F., Long, C. R., Whitelaw, C. B., and Fahrenkrug, S. C. (2012). Efficient TALEN-mediated gene knockout in livestock. Proc. Natl Acad. Sci. USA 109, 17382–17387.
Efficient TALEN-mediated gene knockout in livestock.Crossref | GoogleScholarGoogle Scholar | 23027955PubMed |

Carter, D. B., Lai, L., Park, K. W., Samuel, M., Lattimer, J. C., Jordan, K. R., Estes, D. M., Besch-Williford, C., and Prather, R. S. (2002). Phenotyping of transgenic cloned piglets. Cloning Stem Cells 4, 131–145.
Phenotyping of transgenic cloned piglets.Crossref | GoogleScholarGoogle Scholar | 12171705PubMed |

Cermak, T., Doyle, E. L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J. A., Somia, N. V., Bogdanove, A. J., and Voytas, D. F. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82.
Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting.Crossref | GoogleScholarGoogle Scholar | 21493687PubMed |

Clop, A., Marcq, F., Takeda, H., Pirottin, D., Tordoir, X., Bibe, B., Bouix, J., Caiment, F., Elsen, J. M., Eychenne, F., Larzul, C., Laville, E., Meish, F., Milenkovic, D., Tobin, J., Charlier, C., and Georges, M. (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 38, 813–818.
A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep.Crossref | GoogleScholarGoogle Scholar | 16751773PubMed |

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., and Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823.
Multiplex genome engineering using CRISPR/Cas systems.Crossref | GoogleScholarGoogle Scholar | 23287718PubMed |

Cyranoski, D. (2015). Super-muscly pigs created by small genetic tweak. Nature 523, 13–14.
Super-muscly pigs created by small genetic tweak.Crossref | GoogleScholarGoogle Scholar | 26135425PubMed |

Dai, Y., Vaught, T. D., Boone, J., Chen, S. H., Phelps, C. J., Ball, S., Monahan, J. A., Jobst, P. M., McCreath, K. J., Lamborn, A. E., Cowell-Lucero, J. L., Wells, K. D., Colman, A., Polejaeva, I. A., and Ayares, D. L. (2002). Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat. Biotechnol. 20, 251–255.
Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs.Crossref | GoogleScholarGoogle Scholar | 11875425PubMed |

Denning, C., Burl, S., Ainslie, A., Bracken, J., Dinnyes, A., Fletcher, J., King, T., Ritchie, M., Ritchie, W. A., Rollo, M., de Sousa, P., Travers, A., Wilmut, I., and Clark, A. J. (2001). Deletion of the alpha(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nat. Biotechnol. 19, 559–562.
Deletion of the alpha(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep.Crossref | GoogleScholarGoogle Scholar | 11385461PubMed |

Doench, J. G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E. W., Donovan, K. F., Smith, I., Tothova, Z., Wilen, C., Orchard, R., Virgin, H. W., Listgarten, J., and Root, D. E. (2016). Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191.
Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9.Crossref | GoogleScholarGoogle Scholar | 26780180PubMed |

Estrada, J. L., Martens, G., Li, P., Adams, A., Newell, K. A., Ford, M. L., Butler, J. R., Sidner, R., Tector, M., and Tector, J. (2015). Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/beta4GalNT2 genes. Xenotransplantation 22, 194–202.
Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/beta4GalNT2 genes.Crossref | GoogleScholarGoogle Scholar | 25728481PubMed |

Fernández, A., Josa, S., and Montoliu, L. (2017). A history of genome editing in mammals. Mamm. Genome 28, 237–246.
A history of genome editing in mammals.Crossref | GoogleScholarGoogle Scholar | 28589393PubMed |

Gaj, T., Gersbach, C. A., and Barbas, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405.
ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering.Crossref | GoogleScholarGoogle Scholar | 23664777PubMed |

Gao, X., Nowak-Imialek, M., Chen, X., Chen, D., Herrmann, D., Ruan, D., Chen, A. C. H., Eckersley-Maslin, M. A., Ahmad, S., Lee, Y. L., Kobayashi, T., Ryan, D., Zhong, J., Zhu, J., Wu, J., Lan, G., Petkov, S., Yang, J., Antunes, L., Campos, L. S., Fu, B., Wang, S., Yong, Y., Wang, X., Xue, S. G., Ge, L., Liu, Z., Huang, Y., Nie, T., Li, P., Wu, D., Pei, D., Zhang, Y., Lu, L., Yang, F., Kimber, S. J., Reik, W., Zou, X., Shang, Z., Lai, L., Surani, A., Tam, P. P. L., Ahmed, A., Yeung, W. S. B., Teichmann, S. A., Niemann, H., and Liu, P. (2019). Establishment of porcine and human expanded potential stem cells. Nat. Cell Biol. 21, 687–699.
Establishment of porcine and human expanded potential stem cells.Crossref | GoogleScholarGoogle Scholar | 31160711PubMed |

Göhre, V., and Robatzek, S. (2008). Breaking the barriers: microbial effector molecules subvert plant immunity. Annu. Rev. Phytopathol. 46, 189–215.
Breaking the barriers: microbial effector molecules subvert plant immunity.Crossref | GoogleScholarGoogle Scholar | 18422429PubMed |

Grillenberger, M., Neumann, C. G., Murphy, S. P., Bwibo, N. O., van’t Veer, P., Hautvast, J. G., and West, C. E. (2003). Food supplements have a positive impact on weight gain and the addition of animal source foods increases lean body mass of Kenyan schoolchildren. J. Nutr. 133, 3957S–3964S.
Food supplements have a positive impact on weight gain and the addition of animal source foods increases lean body mass of Kenyan schoolchildren.Crossref | GoogleScholarGoogle Scholar | 14672296PubMed |

Grobet, L., Martin, L. J., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J., Schoeberlein, A., Dunner, S., Menissier, F., Massabanda, J., Fries, R., Hanset, R., and Georges, M. (1997). A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17, 71–74.
A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle.Crossref | GoogleScholarGoogle Scholar | 9288100PubMed |

Hai, T., Teng, F., Guo, R., Li, W., and Zhou, Q. (2014). One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res. 24, 372–375.
One-step generation of knockout pigs by zygote injection of CRISPR/Cas system.Crossref | GoogleScholarGoogle Scholar | 24481528PubMed |

Han, K., Liang, L., Li, L., Ouyang, Z., Zhao, B., Wang, Q., Liu, Z., Zhao, Y., Ren, X., Jiang, F., Lai, C., Wang, K., Yan, S., Huang, L., Guo, L., Zeng, K., Lai, L., and Fan, N. (2017). Generation of Hoxc13 knockout pigs recapitulates human ectodermal dysplasia-9. Hum. Mol. Genet. 26, 184–191.
| 28011715PubMed |

Hauschild, J., Petersen, B., Santiago, Y., Queisser, A. L., Carnwath, J. W., Lucas-Hahn, A., Zhang, L., Meng, X., Gregory, P. D., Schwinzer, R., Cost, G. J., and Niemann, H. (2011). Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc. Natl Acad. Sci. USA 108, 12013–12017.
Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases.Crossref | GoogleScholarGoogle Scholar | 21730124PubMed |

Heyer, W.-D., Ehmsen, K. T., and Liu, J. (2010). Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44, 113–139.
Regulation of homologous recombination in eukaryotes.Crossref | GoogleScholarGoogle Scholar | 20690856PubMed |

Hou, Z., Zhang, Y., Propson, N. E., Howden, S. E., Chu, L. F., Sontheimer, E. J., and Thomson, J. A. (2013). Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl Acad. Sci. USA 110, 15644–15649.
Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis.Crossref | GoogleScholarGoogle Scholar | 23940360PubMed |

Ito, R., Takahashi, T., and Ito, M. (2018). Humanized mouse models: application to human diseases. J. Cell. Physiol. 233, 3723–3728.
Humanized mouse models: application to human diseases.Crossref | GoogleScholarGoogle Scholar | 28598567PubMed |

Kang, J. T., Cho, B., Ryu, J., Ray, C., Lee, E. J., Yun, Y. J., Ahn, S., Lee, J., Ji, D. Y., Jue, N., Clark-Deener, S., Lee, K., and Park, K. W. (2016a). Biallelic modification of IL2RG leads to severe combined immunodeficiency in pigs. Reprod. Biol. Endocrinol. 14, 74.
Biallelic modification of IL2RG leads to severe combined immunodeficiency in pigs.Crossref | GoogleScholarGoogle Scholar | 27809915PubMed |

Kang, J. T., Ryu, J., Cho, B., Lee, E. J., Yun, Y. J., Ahn, S., Lee, J., Ji, D. Y., Lee, K., and Park, K. W. (2016b). Generation of RUNX3 knockout pigs using CRISPR/Cas9-mediated gene targeting. Reprod. Domest. Anim. 51, 970–978.
Generation of RUNX3 knockout pigs using CRISPR/Cas9-mediated gene targeting.Crossref | GoogleScholarGoogle Scholar | 27696566PubMed |

Karvelis, T., Gasiunas, G., Young, J., Bigelyte, G., Silanskas, A., Cigan, M., and Siksnys, V. (2015). Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol. 16, 253.
Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements.Crossref | GoogleScholarGoogle Scholar | 26585795PubMed |

Kim, D., Lim, K., Kim, S. T., Yoon, S. H., Kim, K., Ryu, S. M., and Kim, J. S. (2017). Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat. Biotechnol. 35, 475–480.
Genome-wide target specificities of CRISPR RNA-guided programmable deaminases.Crossref | GoogleScholarGoogle Scholar | 28398345PubMed |

Kim, D., Kim, D. E., Lee, G., Cho, S. I., and Kim, J. S. (2019). Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat. Biotechnol. 37, 430–435.
Genome-wide target specificity of CRISPR RNA-guided adenine base editors.Crossref | GoogleScholarGoogle Scholar | 30833658PubMed |

Koh, S., and Piedrahita, J. A. (2014). From ‘ES-like’ cells to induced pluripotent stem cells: a historical perspective in domestic animals. Theriogenology 81, 103–111.
From ‘ES-like’ cells to induced pluripotent stem cells: a historical perspective in domestic animals.Crossref | GoogleScholarGoogle Scholar | 24274415PubMed |

Komor, A. C., Badran, A. H., and Liu, D. R. (2018). Editing the genome without double-stranded DNA breaks. ACS Chem. Biol. 13, 383–388.
Editing the genome without double-stranded DNA breaks.Crossref | GoogleScholarGoogle Scholar | 28957631PubMed |

Kwon, D. N., Lee, K., Kang, M. J., Choi, Y. J., Park, C., Whyte, J. J., Brown, A. N., Kim, J. H., Samuel, M., Mao, J., Park, K. W., Murphy, C. N., Prather, R. S., and Kim, J. H. (2013). Production of biallelic CMP-Neu5Ac hydroxylase knock-out pigs. Sci. Rep. 3, 1981.
Production of biallelic CMP-Neu5Ac hydroxylase knock-out pigs.Crossref | GoogleScholarGoogle Scholar | 23760311PubMed |

Lai, L., Kolber-Simonds, D., Park, K. W., Cheong, H. T., Greenstein, J. L., Im, G. S., Samuel, M., Bonk, A., Rieke, A., Day, B. N., Murphy, C. N., Carter, D. B., Hawley, R. J., and Prather, R. S. (2002). Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295, 1089–1092.
Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning.Crossref | GoogleScholarGoogle Scholar | 11778012PubMed |

Längin, M., Mayr, T., Reichart, B., Michel, S., Buchholz, S., Guethoff, S., Dashkevich, A., Baehr, A., Egerer, S., Bauer, A., Mihalj, M., Panelli, A., Issl, L., Ying, J., Fresch, A. K., Buttgereit, I., Mokelke, M., Radan, J., Werner, F., Lutzmann, I., Steen, S., Sjoberg, T., Paskevicius, A., Qiuming, L., Sfriso, R., Rieben, R., Dahlhoff, M., Kessler, B., Kemter, E., Kurome, M., Zakhartchenko, V., Klett, K., Hinkel, R., Kupatt, C., Falkenau, A., Reu, S., Ellgass, R., Herzog, R., Binder, U., Wich, G., Skerra, A., Ayares, D., Kind, A., Schonmann, U., Kaup, F. J., Hagl, C., Wolf, E., Klymiuk, N., Brenner, P., and Abicht, J. M. (2018). Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 564, 430–433.
Consistent success in life-supporting porcine cardiac xenotransplantation.Crossref | GoogleScholarGoogle Scholar | 30518863PubMed |

Lee, K., Kwon, D. N., Ezashi, T., Choi, Y. J., Park, C., Ericsson, A. C., Brown, A. N., Samuel, M. S., Park, K. W., Walters, E. M., Kim, D. Y., Kim, J. H., Franklin, C. L., Murphy, C. N., Roberts, R. M., Prather, R. S., and Kim, J. H. (2014). Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. Proc. Natl Acad. Sci. USA 111, 7260–7265.
Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency.Crossref | GoogleScholarGoogle Scholar | 24799706PubMed |

Lei, S., Ryu, J., Wen, K., Twitchell, E., Bui, T., Ramesh, A., Weiss, M., Li, G., Samuel, H., Clark-Deener, S., Jiang, X., Lee, K., and Yuan, L. (2016). Increased and prolonged human norovirus infection in RAG2/IL2RG deficient gnotobiotic pigs with severe combined immunodeficiency. Sci. Rep. 6, 25222.
Increased and prolonged human norovirus infection in RAG2/IL2RG deficient gnotobiotic pigs with severe combined immunodeficiency.Crossref | GoogleScholarGoogle Scholar | 27118081PubMed |

Li, Z., Yang, H. Y., Wang, Y., Zhang, M. L., Liu, X. R., Xiong, Q., Zhang, L. N., Jin, Y., Mou, L. S., Liu, Y., Li, R. F., Rao, Y., and Dai, Y. F. (2017). Generation of tryptophan hydroxylase 2 gene knockout pigs by CRISPR/Cas9-mediated gene targeting. J. Biomed. Res. 31, 445–452.
| 28866660PubMed |

Li, C., Zhou, S., Li, Y., Li, G., Ding, Y., Li, L., Liu, J., Qu, L., Sonstegard, T., Huang, X., Jiang, Y., Chen, Y., Petersen, B., and Wang, X. (2018a). Trio-based deep sequencing reveals a low incidence of off-target mutations in the offspring of genetically edited goats. Front Genet. 9, 449.
Trio-based deep sequencing reveals a low incidence of off-target mutations in the offspring of genetically edited goats.Crossref | GoogleScholarGoogle Scholar | 30356875PubMed |

Li, Z., Duan, X., An, X., Feng, T., Li, P., Li, L., Liu, J., Wu, P., Pan, D., Du, X., and Wu, S. (2018b). Efficient RNA-guided base editing for disease modeling in pigs. Cell Discov. 4, 64.
Efficient RNA-guided base editing for disease modeling in pigs.Crossref | GoogleScholarGoogle Scholar | 30588328PubMed |

Lillico, S. G., Proudfoot, C., Carlson, D. F., Stverakova, D., Neil, C., Blain, C., King, T. J., Ritchie, W. A., Tan, W., Mileham, A. J., McLaren, D. G., Fahrenkrug, S. C., and Whitelaw, C. B. (2013). Live pigs produced from genome edited zygotes. Sci. Rep. 3, 2847.
Live pigs produced from genome edited zygotes.Crossref | GoogleScholarGoogle Scholar | 24108318PubMed |

Lunney, J. K., Fang, Y., Ladinig, A., Chen, N., Li, Y., Rowland, B., and Renukaradhya, G. J. (2016). Porcine reproductive and respiratory syndrome virus (PRRSV): pathogenesis and interaction with the immune system. Annu. Rev. Anim. Biosci. 4, 129–154.
Porcine reproductive and respiratory syndrome virus (PRRSV): pathogenesis and interaction with the immune system.Crossref | GoogleScholarGoogle Scholar | 26646630PubMed |

Lutz, A. J., Li, P., Estrada, J. L., Sidner, R. A., Chihara, R. K., Downey, S. M., Burlak, C., Wang, Z. Y., Reyes, L. M., Ivary, B., Yin, F., Blankenship, R. L., Paris, L. L., and Tector, A. J. (2013). Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 20, 27–35.
Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1,3-galactose reduce the humoral barrier to xenotransplantation.Crossref | GoogleScholarGoogle Scholar | 23384142PubMed |

Maruyama, T., Dougan, S. K., Truttmann, M. C., Bilate, A. M., Ingram, J. R., and Ploegh, H. L. (2015). Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33, 538–542.
Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining.Crossref | GoogleScholarGoogle Scholar | 25798939PubMed |

McCreath, K. J., Howcroft, J., Campbell, K. H., Colman, A., Schnieke, A. E., and Kind, A. J. (2000). Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405, 1066–1069.
Production of gene-targeted sheep by nuclear transfer from cultured somatic cells.Crossref | GoogleScholarGoogle Scholar | 10890449PubMed |

Murphy, S. P., and Allen, L. H. (2003). Nutritional importance of animal source foods. J. Nutr. 133, 3932S–3935S.
Nutritional importance of animal source foods.Crossref | GoogleScholarGoogle Scholar | 14672292PubMed |

Nishimasu, H., Cong, L., Yan, W. X., Ran, F. A., Zetsche, B., Li, Y., Kurabayashi, A., Ishitani, R., Zhang, F., and Nureki, O. (2015). Crystal structure of Staphylococcus aureus Cas9. Cell 162, 1113–1126.
Crystal structure of Staphylococcus aureus Cas9.Crossref | GoogleScholarGoogle Scholar | 26317473PubMed |

Niu, D., Wei, H. J., Lin, L., George, H., Wang, T., Lee, I. H., Zhao, H. Y., Wang, Y., Kan, Y., Shrock, E., Lesha, E., Wang, G., Luo, Y., Qing, Y., Jiao, D., Zhao, H., Zhou, X., Wang, S., Wei, H., Guell, M., Church, G. M., and Yang, L. (2017). Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357, 1303–1307.
Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9.Crossref | GoogleScholarGoogle Scholar | 28798043PubMed |

Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., Hanada, H., and Perry, A. C. (2000). Pig cloning by microinjection of fetal fibroblast nuclei. Science 289, 1188–1190.
Pig cloning by microinjection of fetal fibroblast nuclei.Crossref | GoogleScholarGoogle Scholar | 10947985PubMed |

Park, M. R., Cho, S. K., Lee, S. Y., Choi, Y. J., Park, J. Y., Kwon, D. N., Son, W. J., Paik, S. S., Kim, T., Han, Y. M., and Kim, J. H. (2005). A rare and often unrecognized cerebromeningitis and hemodynamic disorder: a major cause of sudden death in somatic cell cloned piglets. Proteomics 5, 1928–1939.
A rare and often unrecognized cerebromeningitis and hemodynamic disorder: a major cause of sudden death in somatic cell cloned piglets.Crossref | GoogleScholarGoogle Scholar | 15832370PubMed |

Park, K. E., Kaucher, A. V., Powell, A., Waqas, M. S., Sandmaier, S. E., Oatley, M. J., Park, C. H., Tibary, A., Donovan, D. M., Blomberg, L. A., Lillico, S. G., Whitelaw, C. B., Mileham, A., Telugu, B. P., and Oatley, J. M. (2017a). Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Sci. Rep. 7, 40176.
Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene.Crossref | GoogleScholarGoogle Scholar | 28071690PubMed |

Park, K. E., Powell, A., Sandmaier, S. E., Kim, C. M., Mileham, A., Donovan, D. M., and Telugu, B. P. (2017b). Targeted gene knock-in by CRISPR/Cas ribonucleoproteins in porcine zygotes. Sci. Rep. 7, 42458.
Targeted gene knock-in by CRISPR/Cas ribonucleoproteins in porcine zygotes.Crossref | GoogleScholarGoogle Scholar | 28195163PubMed |

Polejaeva, I. A., Chen, S. H., Vaught, T. D., Page, R. L., Mullins, J., Ball, S., Dai, Y., Boone, J., Walker, S., Ayares, D. L., Colman, A., and Campbell, K. H. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 86–90.
Cloned pigs produced by nuclear transfer from adult somatic cells.Crossref | GoogleScholarGoogle Scholar | 10993078PubMed |

Prather, R. S., Lorson, M., Ross, J. W., Whyte, J. J., and Walters, E. (2013). Genetically engineered pig models for human diseases. Annu. Rev. Anim. Biosci. 1, 203–219.
Genetically engineered pig models for human diseases.Crossref | GoogleScholarGoogle Scholar | 25387017PubMed |

Qian, L., Tang, M., Yang, J., Wang, Q., Cai, C., Jiang, S., Li, H., Jiang, K., Gao, P., Ma, D., Chen, Y., An, X., Li, K., and Cui, W. (2015). Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci. Rep. 5, 14435.
Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs.Crossref | GoogleScholarGoogle Scholar | 26400270PubMed |

Ran, F. A., Cong, L., Yan, W. X., Scott, D. A., Gootenberg, J. S., Kriz, A. J., Zetsche, B., Shalem, O., Wu, X., Makarova, K. S., Koonin, E. V., Sharp, P. A., and Zhang, F. (2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191.
In vivo genome editing using Staphylococcus aureus Cas9.Crossref | GoogleScholarGoogle Scholar | 25830891PubMed |

Rogers, C. S., Hao, Y., Rokhlina, T., Samuel, M., Stoltz, D. A., Li, Y., Petroff, E., Vermeer, D. W., Kabel, A. C., Yan, Z., Spate, L., Wax, D., Murphy, C. N., Rieke, A., Whitworth, K., Linville, M. L., Korte, S. W., Engelhardt, J. F., Welsh, M. J., and Prather, R. S. (2008a). Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J. Clin. Invest. 118, 1571–1577.
Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 18324337PubMed |

Rogers, C. S., Stoltz, D. A., Meyerholz, D. K., Ostedgaard, L. S., Rokhlina, T., Taft, P. J., Rogan, M. P., Pezzulo, A. A., Karp, P. H., Itani, O. A., Kabel, A. C., Wohlford-Lenane, C. L., Davis, G. J., Hanfland, R. A., Smith, T. L., Samuel, M., Wax, D., Murphy, C. N., Rieke, A., Whitworth, K., Uc, A., Starner, T. D., Brogden, K. A., Shilyansky, J., McCray, P. B., Zabner, J., Prather, R. S., and Welsh, M. J. (2008b). Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321, 1837–1841.
Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs.Crossref | GoogleScholarGoogle Scholar | 18818360PubMed |

Ruan, J., Li, H., Xu, K., Wu, T., Wei, J., Zhou, R., Liu, Z., Mu, Y., Yang, S., Ouyang, H., Chen-Tsai, R. Y., and Li, K. (2015). Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Sci. Rep. 5, 14253.
Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs.Crossref | GoogleScholarGoogle Scholar | 26381350PubMed |

Semaniakou, A., Croll, R. P., and Chappe, V. (2019). Animal models in the pathophysiology of cystic fibrosis. Front. Pharmacol. 9, 1475.
Animal models in the pathophysiology of cystic fibrosis.Crossref | GoogleScholarGoogle Scholar | 30662403PubMed |

Sheets, T. P., Park, C. H., Park, K. E., Powell, A., Donovan, D. M., and Telugu, B. P. (2016). Somatic cell nuclear transfer followed by CRIPSR/Cas9 microinjection results in highly efficient genome editing in cloned pigs. Int. J. Mol. Sci. 17, 2031.
Somatic cell nuclear transfer followed by CRIPSR/Cas9 microinjection results in highly efficient genome editing in cloned pigs.Crossref | GoogleScholarGoogle Scholar |

Shultz, L. D., Lyons, B. L., Burzenski, L. M., Gott, B., Chen, X., Chaleff, S., Kotb, M., Gillies, S. D., King, M., Mangada, J., Greiner, D. L., and Handgretinger, R. (2005). Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. 174, 6477–6489.
Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells.Crossref | GoogleScholarGoogle Scholar | 15879151PubMed |

Shultz, L. D., Ishikawa, F., and Greiner, D. L. (2007). Humanized mice in translational biomedical research. Nat. Rev. Immunol. 7, 118–130.
Humanized mice in translational biomedical research.Crossref | GoogleScholarGoogle Scholar | 17259968PubMed |

Song, J., Yang, D., Xu, J., Zhu, T., Chen, Y. E., and Zhang, J. (2016). RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat. Commun. 7, 10548.
RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency.Crossref | GoogleScholarGoogle Scholar | 26817820PubMed |

Suzuki, S., Iwamoto, M., Saito, Y., Fuchimoto, D., Sembon, S., Suzuki, M., Mikawa, S., Hashimoto, M., Aoki, Y., Najima, Y., Takagi, S., Suzuki, N., Suzuki, E., Kubo, M., Mimuro, J., Kashiwakura, Y., Madoiwa, S., Sakata, Y., Perry, A. C., Ishikawa, F., and Onishi, A. (2012). Il2rg gene-targeted severe combined immunodeficiency pigs. Cell Stem Cell 10, 753–758.
Il2rg gene-targeted severe combined immunodeficiency pigs.Crossref | GoogleScholarGoogle Scholar | 22704516PubMed |

Tan, W., Carlson, D. F., Lancto, C. A., Garbe, J. R., Webster, D. A., Hackett, P. B., and Fahrenkrug, S. C. (2013). Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc. Natl Acad. Sci. USA 110, 16526–16531.
Efficient nonmeiotic allele introgression in livestock using custom endonucleases.Crossref | GoogleScholarGoogle Scholar | 24014591PubMed |

Urnov, F. D., Miller, J. C., Lee, Y. L., Beausejour, C. M., Rock, J. M., Augustus, S., Jamieson, A. C., Porteus, M. H., Gregory, P. D., and Holmes, M. C. (2005). Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651.
Highly efficient endogenous human gene correction using designed zinc-finger nucleases.Crossref | GoogleScholarGoogle Scholar | 15806097PubMed |

Wang, X., Zhou, J., Cao, C., Huang, J., Hai, T., Wang, Y., Zheng, Q., Zhang, H., Qin, G., Miao, X., Wang, H., Cao, S., Zhou, Q., and Zhao, J. (2015a). Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs. Sci. Rep. 5, 13348.
Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs.Crossref | GoogleScholarGoogle Scholar | 26293209PubMed |

Wang, Y., Du, Y., Shen, B., Zhou, X., Li, J., Liu, Y., Wang, J., Zhou, J., Hu, B., Kang, N., Gao, J., Yu, L., Huang, X., and Wei, H. (2015b). Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Sci. Rep. 5, 8256.
Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA.Crossref | GoogleScholarGoogle Scholar | 25653176PubMed |

Whitworth, K. M., Lee, K., Benne, J. A., Beaton, B. P., Spate, L. D., Murphy, S. L., Samuel, M. S., Mao, J., O’Gorman, C., Walters, E. M., Murphy, C. N., Driver, J. P., Mileham, A., McLaren, D., Wells, K. D., and Prather, R. S. (2014). Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol. Reprod. 91, 78.
Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos.Crossref | GoogleScholarGoogle Scholar | 25100712PubMed |

Whitworth, K. M., Rowland, R. R., Ewen, C. L., Trible, B. R., Kerrigan, M. A., Cino-Ozuna, A. G., Samuel, M. S., Lightner, J. E., McLaren, D. G., Mileham, A. J., Wells, K. D., and Prather, R. S. (2016). Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat. Biotechnol. 34, 20–22.
Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus.Crossref | GoogleScholarGoogle Scholar | 26641533PubMed |

Whitworth, K. M., Rowland, R. R. R., Petrovan, V., Sheahan, M., Cino-Ozuna, A. G., Fang, Y., Hesse, R., Mileham, A., Samuel, M. S., Wells, K. D., and Prather, R. S. (2019). Resistance to coronavirus infection in amino peptidase N-deficient pigs. Transgenic Res. 28, 21–32.
Resistance to coronavirus infection in amino peptidase N-deficient pigs.Crossref | GoogleScholarGoogle Scholar | 30315482PubMed |

Whyte, J. J., Zhao, J., Wells, K. D., Samuel, M. S., Whitworth, K. M., Walters, E. M., Laughlin, M. H., and Prather, R. S. (2011). Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol. Reprod. Dev. 78, 2.
Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs.Crossref | GoogleScholarGoogle Scholar | 21268178PubMed |

Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.
Viable offspring derived from fetal and adult mammalian cells.Crossref | GoogleScholarGoogle Scholar | 9039911PubMed |

Wright, D. A., Thibodeau-Beganny, S., Sander, J. D., Winfrey, R. J., Hirsh, A. S., Eichtinger, M., Fu, F., Porteus, M. H., Dobbs, D., Voytas, D. F., and Joung, J. K. (2006). Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat. Protoc. 1, 1637–1652.
Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly.Crossref | GoogleScholarGoogle Scholar | 17406455PubMed |

Wu, H., Liu, Q., Shi, H., Xie, J., Zhang, Q., Ouyang, Z., Li, N., Yang, Y., Liu, Z., Zhao, Y., Lai, C., Ruan, D., Peng, J., Ge, W., Chen, F., Fan, N., Jin, Q., Liang, Y., Lan, T., Yang, X., Wang, X., Lei, Z., Doevendans, P. A., Sluijter, J. P. G., Wang, K., Li, X., and Lai, L. (2018). Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems. Cell. Mol. Life Sci. 75, 3593–3607.
Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems.Crossref | GoogleScholarGoogle Scholar | 29637228PubMed |

Yang, D., Yang, H., Li, W., Zhao, B., Ouyang, Z., Liu, Z., Zhao, Y., Fan, N., Song, J., Tian, J., Li, F., Zhang, J., Chang, L., Pei, D., Chen, Y. E., and Lai, L. (2011). Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res. 21, 979–982.
Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning.Crossref | GoogleScholarGoogle Scholar | 21502977PubMed |

Yang, L., Guell, M., Niu, D., George, H., Lesha, E., Grishin, D., Aach, J., Shrock, E., Xu, W., Poci, J., Cortazio, R., Wilkinson, R. A., Fishman, J. A., and Church, G. (2015). Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350, 1101–1104.
Genome-wide inactivation of porcine endogenous retroviruses (PERVs).Crossref | GoogleScholarGoogle Scholar | 26456528PubMed |

Yugo, D. M., Heffron, C. L., Ryu, J., Uh, K., Subramaniam, S., Matzinger, S. R., Overend, C., Cao, D., Kenney, S. P., Sooryanarain, H., Cecere, T., LeRoith, T., Yuan, L., Jue, N., Clark-Deener, S., Lee, K., and Meng, X. J. (2018). Infection dynamics of hepatitis E virus in wild-type and immunoglobulin heavy chain knockout JH–/– gnotobiotic piglets. J. Virol. 92, e01208–18.
Infection dynamics of hepatitis E virus in wild-type and immunoglobulin heavy chain knockout JH–/– gnotobiotic piglets.Crossref | GoogleScholarGoogle Scholar | 30111571PubMed |

Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., van der Oost, J., Regev, A., Koonin, E. V., and Zhang, F. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771.
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system.Crossref | GoogleScholarGoogle Scholar | 26422227PubMed |

Zhang, B., Duan, Z., and Zhao, Y. (2009). Mouse models with human immunity and their application in biomedical research. J. Cell. Mol. Med. 13, 1043–1058.
Mouse models with human immunity and their application in biomedical research.Crossref | GoogleScholarGoogle Scholar | 18419795PubMed |

Zhang, X. H., Tee, L. Y., Wang, X. G., Huang, Q. S., and Yang, S. H. (2015). Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol. Ther. Nucleic Acids 4, e264.
Off-target effects in CRISPR/Cas9-mediated genome engineering.Crossref | GoogleScholarGoogle Scholar | 26575098PubMed |

Zhao, J., Whyte, J., and Prather, R. S. (2010). Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer. Cell Tissue Res. 341, 13–21.
Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 20563602PubMed |

Zheng, Q., Lin, J., Huang, J., Zhang, H., Zhang, R., Zhang, X., Cao, C., Hambly, C., Qin, G., and Yao, J. (2017a). Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proc. Natl. Acad. Sci. USA 114, E9474–E9482.
Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity.Crossref | GoogleScholarGoogle Scholar | 29078316PubMed |

Zheng, T., Hou, Y., Zhang, P., Zhang, Z., Xu, Y., Zhang, L., Niu, L., Yang, Y., Liang, D., Yi, F., Peng, W., Feng, W., Yang, Y., Chen, J., Zhu, Y. Y., Zhang, L. H., and Du, Q. (2017b). Profiling single-guide RNA specificity reveals a mismatch sensitive core sequence. Sci. Rep. 7, 40638.
Profiling single-guide RNA specificity reveals a mismatch sensitive core sequence.Crossref | GoogleScholarGoogle Scholar | 28098181PubMed |

Zijlstra, M., Li, E., Sajjadi, F., Subramani, S., and Jaenisch, R. (1989). Germ-line transmission of a disrupted beta 2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature 342, 435–438.
Germ-line transmission of a disrupted beta 2-microglobulin gene produced by homologous recombination in embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 2685607PubMed |

Zuo, E., Sun, Y., Wei, W., Yuan, T., Ying, W., Sun, H., Yuan, L., Steinmetz, L. M., Li, Y., and Yang, H. (2019). Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292.
| 30819928PubMed |