Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Livestock pluripotency is finally captured in vitro

Micaela Navarro A , Delia A. Soto A , Carlos A. Pinzon B , Jun Wu B C and Pablo J. Ross A D
+ Author Affiliations
- Author Affiliations

A Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA.

B Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.

C Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.

D Corresponding author. Email: pross@ucdavis.edu

Reproduction, Fertility and Development 32(2) 11-39 https://doi.org/10.1071/RD19272
Published: 2 December 2019

Abstract

Pluripotent stem cells (PSCs) have demonstrated great utility in improving our understanding of mammalian development and continue to revolutionise regenerative medicine. Thanks to the improved understanding of pluripotency in mice and humans, it has recently become feasible to generate stable livestock PSCs. Although it is unlikely that livestock PSCs will be used for similar applications as their murine and human counterparts, new exciting applications that could greatly advance animal agriculture are being developed, including the use of PSCs for complex genome editing, cellular agriculture, gamete generation and in vitro breeding schemes.

Additional keywords: cattle, embryo, embryonic stem cells, induced pluripotent stem cells, inhibitor of Wnt response (IWR)-1, pig, tankyrase, Wingless/Integrated (WNT) signaling pathway.


References

Alberio, R., Croxall, N., and Allegrucci, C. (2010). Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells Dev. 1, 1627–1636.
Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal.Crossref | GoogleScholarGoogle Scholar |

Anderson, G. B., BonDurant, R. H., Goff, L., Groff, J., and Moyer, A. L. (1996). Development of bovine and porcine embryonic teratomas in athymic mice. Anim. Reprod. Sci. 45, 231–240.
Development of bovine and porcine embryonic teratomas in athymic mice.Crossref | GoogleScholarGoogle Scholar | 9227925PubMed |

Austin, C. P., Battey, J. F., Bradley, A., Bucan, M., Capecchi, M., Collins, F. S., Dove, W. F., Duyk, G., Dymecki, S., Eppig, J. T., Grieder, F. B., Heintz, N., Hicks, G., Insel, T. R., Joyner, A., Koller, B. H., Lloyd, K. C. K., Magnuson, T., Moore, M. W., Nagy, A., Pollock, J. D., Roses, A. D., Sands, A. T., Seed, B., Skarnes, W. C., Snoddy, J., Soriano, P., Stewart, D. J., Stewart, F., Stillman, B., Varmus, H., Varticovski, L., Verma, I. M., Vogt, T. F., Von Melchner, H., Witkowski, J., Woychik, R. P., Wurst, W., Yancopoulos, G. D., Young, S. G., and Zambrowicz, B. (2004). The knockout mouse project. Nat. Genet. 36, 921–924.
The knockout mouse project.Crossref | GoogleScholarGoogle Scholar | 15340423PubMed |

Baek, S., Han, N. R., Yun, J. I., Hwang, J. Y., Kim, M., Park, C. K., Lee, E., and Lee, S. T. (2017). Effects of culture dimensions on maintenance of porcine inner cell mass-derived cell self-renewal. Mol. Cells 40, 117–122.
Effects of culture dimensions on maintenance of porcine inner cell mass-derived cell self-renewal.Crossref | GoogleScholarGoogle Scholar | 28196411PubMed |

Bao, L., He, L., Chen, J., Wu, Z., Liao, J., Rao, L., Ren, J., Li, H., Zhu, H., Qian, L., Gu, Y., Dai, H., Xu, X., Zhou, J., Wang, W., Cui, C., and Xiao, L. (2011). Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Res. 21, 600–608.
Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors.Crossref | GoogleScholarGoogle Scholar | 21221129PubMed |

Bao, S., Tang, W. W., Wu, B., Kim, S., Li, J., Li, L., Kobayashi, T., Lee, C., Chen, Y., Wei, M., Li, S., Dietmann, S., Tang, F., Li, X., and Surani, M. A. (2018). Derivation of hypermethylated pluripotent embryonic stem cells with high potency. Cell Res. 28, 22–34.
Derivation of hypermethylated pluripotent embryonic stem cells with high potency.Crossref | GoogleScholarGoogle Scholar | 29076502PubMed |

Behboodi, E., Bondareva, A., Begin, I., Rao, K., Neveu, N., Pierson, J. T., Wylie, C., and Piero, F. D. (2011). Establishment of goat embryonic stem cells from in vivo produced blastocyst-stage embryos. Mol Reprod Dev. 78, 202–211.
Establishment of goat embryonic stem cells from in vivo produced blastocyst-stage embryos.Crossref | GoogleScholarGoogle Scholar | 21387453PubMed |

Behboodi, E., Lam, L., Gavin, W. G., Bondareva, A., and Dobrinski, I. (2013). Goat embryonic stem-like cell derivation and characterization. Methods Mol Biol. 1074, 51–67.
Goat embryonic stem-like cell derivation and characterization.Crossref | GoogleScholarGoogle Scholar | 23975805PubMed |

Blelloch, R., Wang, Z., Meissner, A., Pollard, S., Smith, A., and Jaenisch, R. (2006). Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells 24, 2007–2013.
Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus.Crossref | GoogleScholarGoogle Scholar | 16709876PubMed |

Blomberg, L. A., Schreier, L. L., and Talbot, N. C. (2008). Expression analysis of pluripotency factors in the undifferentiated porcine inner cell mass and epiblast during in vitro culture. Mol. Reprod. Dev. 75, 450–463.
Expression analysis of pluripotency factors in the undifferentiated porcine inner cell mass and epiblast during in vitro culture.Crossref | GoogleScholarGoogle Scholar | 17680630PubMed |

Bogliotti, Y. S., Wu, J., Vilarino, M., Okamura, D., Soto, D. A., Zhong, C., Sakurai, M., Sampaio, R. V., Suzuki, K., Izpisua Belmonte, J. C., and Ross, P. J. (2018). Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc. Natl Acad. Sci. USA 115, 2090–2095.
Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 29440377PubMed |

Bosnali, M., and Edenhofer, F. (2008). Generation of transducible versions of transcription factors Oct4 and Sox2. Biol. Chem. 389, 851–861.
Generation of transducible versions of transcription factors Oct4 and Sox2.Crossref | GoogleScholarGoogle Scholar | 18681826PubMed |

Bradley, A., Evans, M., Kaufman, M. H., and Robertson, E. (1984). Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256.
Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines.Crossref | GoogleScholarGoogle Scholar | 6717601PubMed |

Brevini, T. A. L., Pennarossa, G., Attanasio, L., Vanelli, A., Gasparrini, B., and Gandolfi, F. (2010). Culture conditions and signalling networks promoting the establishment of cell lines from parthenogenetic and biparental pig embryos. Stem Cell Rev. Rep. 6, 484–495.
Culture conditions and signalling networks promoting the establishment of cell lines from parthenogenetic and biparental pig embryos.Crossref | GoogleScholarGoogle Scholar |

Brons, I. G. M., Smithers, L. E., Trotter, M. W. B., Rugg-Gunn, P., Sun, B., Chuva De Sousa Lopes, S. M., Howlett, S. K., Clarkson, A., Ahrlund-Richter, L., Pedersen, R. A., and Vallier, L. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195.
Derivation of pluripotent epiblast stem cells from mammalian embryos.Crossref | GoogleScholarGoogle Scholar |

Cao, S., Wang, F., Chen, Z., Liu, Z., Mei, C., Wu, H., Huang, J., Li, C., Zhou, L., and Lin, L. (2009). Isolation and culture of primary bovine embryonic stem cell colonies by a novel method. J Exp Zool A Ecol Genet Physiol 311, 368–376.
Isolation and culture of primary bovine embryonic stem cell colonies by a novel method.Crossref | GoogleScholarGoogle Scholar | 19340839PubMed |

Cao, H., Yang, P., Pu, Y., Sun, X., Yin, H., Zhang, Y., Zhang, Y., and Li, Y. (2012). Characterization of bovine induced pluripotent stem cells by lentiviral transduction of reprogramming factor fusion proteins. Int. J. Biol. Sci. 8, 498–511.
Characterization of bovine induced pluripotent stem cells by lentiviral transduction of reprogramming factor fusion proteins.Crossref | GoogleScholarGoogle Scholar | 22457605PubMed |

Cao, S., Wang, F., and Liu, L. (2013). Isolation and culture of bovine embryonic stem cells. Methods Mol. Biol. 1074, 111–123.
Isolation and culture of bovine embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 23975809PubMed |

Chen, L. R., Shiue, Y. L., Bertolini, L., Medrano, J. F., BonDurant, R. H., and Anderson, G. B. (1999). Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology 52, 195–212.
Establishment of pluripotent cell lines from porcine preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 10734388PubMed |

Chen, H., Zuo, Q., Wang, Y., Song, J., Yang, H., Zhang, Y., and Li, B. (2017). Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters. BMC Biotechnol. 17, 11.
Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters.Crossref | GoogleScholarGoogle Scholar | 28193206PubMed |

Cheng, D., Guo, Y., Li, Z., Liu, Y., Gao, X., Gao, Y., Cheng, X., Hu, J., and Wang, H. (2012a). Porcine induced pluripotent stem cells require LIF and maintain their developmental potential in early stage of embryos. PLoS One 7, e51778.
Porcine induced pluripotent stem cells require LIF and maintain their developmental potential in early stage of embryos.Crossref | GoogleScholarGoogle Scholar | 23251622PubMed |

Cheng, D., Li, Z., Liu, Y., Gao, Y., and Wang, H. (2012b). Kinetic analysis of porcine fibroblast reprogramming toward pluripotency by defined factors. Cell. Reprogram. 14, 312–323.
Kinetic analysis of porcine fibroblast reprogramming toward pluripotency by defined factors.Crossref | GoogleScholarGoogle Scholar | 22775330PubMed |

Cheong, S. A., Kim, E., Kwak, S.-S., Jeon, Y., and Hyun, S.-H. (2015). Improvement in the blastocyst quality and efficiency of putative embryonic stem cell line derivation from porcine embryos produced in vitro using a novel culturing system. Mol. Med. Rep. 12, 2140–2148.
Improvement in the blastocyst quality and efficiency of putative embryonic stem cell line derivation from porcine embryos produced in vitro using a novel culturing system.Crossref | GoogleScholarGoogle Scholar | 25892608PubMed |

Choi, Y. J., Lin, C. P., Risso, D., Chen, S., Kim, T. A., Tan, M. H., Li, J. B., Wu, Y., Chen, C., Xuan, Z., Macfarlan, T., Peng, W., Lloyd, K. C. K., Kim, S. Y., Speed, T. P., and He, L. (2017). Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells. Science 355, 80.
Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar |

Choi, K.-H., Lee, D.-K., Kim, S. W., Woo, S.-H., Kim, D.-Y., and Lee, C.-K. (2019). Chemically defined media can maintain pig pluripotency network in vitro. Stem Cell Reports 13, 221–234.
Chemically defined media can maintain pig pluripotency network in vitro.Crossref | GoogleScholarGoogle Scholar | 31257130PubMed |

Chu, Z., Niu, B., Zhu, H., He, X., Bai, C., Li, G., and Hua, J. (2015). PRMT5 enhances generation of induced pluripotent stem cells from dairy goat embryonic fibroblasts via down-regulation of p53. Cell Prolif. 48, 29–38.
PRMT5 enhances generation of induced pluripotent stem cells from dairy goat embryonic fibroblasts via down-regulation of p53.Crossref | GoogleScholarGoogle Scholar | 25424361PubMed |

Cibelli, J. B., Stice, S. L., Golueke, P. J., Kane, J. J., Jerry, J., Blackwell, C., Ponce de León, F. A., and Robl, J. M. (1998). Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat. Biotechnol. 16, 642–646.
Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells.Crossref | GoogleScholarGoogle Scholar | 9661197PubMed |

Cong, S., Cao, G., and Liu, D. (2014). Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro. Cytotechnology 66, 995–1005.
Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro.Crossref | GoogleScholarGoogle Scholar | 24807816PubMed |

Dattena, M., Chessa, B., Lacerenza, D., Accardo, C., Pilichi, S., Mara, L., Chessa, F., Vincenti, L., and Cappai, P. (2006). Isolation, culture, and characterization of embryonic cell lines from vitrified sheep blastocysts. Mol. Reprod. Dev. 73, 31–39.
Isolation, culture, and characterization of embryonic cell lines from vitrified sheep blastocysts.Crossref | GoogleScholarGoogle Scholar | 16206132PubMed |

De Iaco, A., Coudray, A., Duc, J., and Trono, D. (2019). DPPA2 and DPPA4 are necessary to establish a 2C-like state in mouse embryonic stem cells. EMBO Rep. 20, e47382.
DPPA2 and DPPA4 are necessary to establish a 2C-like state in mouse embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 30948459PubMed |

Denicol, A. C., Dobbs, K. B., McLean, K. M., Carambula, S. F., Loureiro, B., and Hansen, P. J. (2013). Canonical WNT signaling regulates development of bovine embryos to the blastocyst stage. Sci. Rep. 3, 1266.
Canonical WNT signaling regulates development of bovine embryos to the blastocyst stage.Crossref | GoogleScholarGoogle Scholar | 23405280PubMed |

Denicol, A. C., Block, J., Kelley, D. E., Pohler, K. G., Dobbs, K. B., Mortensen, C. J., Ortega, M. S., and Hansen, P. J. (2014). The WNT signaling antagonist Dickkopf-1 directs lineage commitment and promotes survival of the preimplantation embryo. FASEB J. 28, 3975–3986.
The WNT signaling antagonist Dickkopf-1 directs lineage commitment and promotes survival of the preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 24858280PubMed |

Du, X., Feng, T., Yu, D., Wu, Y., Zou, H., Ma, S., Feng, C., Huang, Y., Ouyang, H., Hu, X., Pan, D., Li, N., and Wu, S. (2015). Barriers for deriving transgene-free pig iPS cells with episomal vectors. Stem Cells 33, 3228–3238.
Barriers for deriving transgene-free pig iPS cells with episomal vectors.Crossref | GoogleScholarGoogle Scholar | 26138940PubMed |

Dutta, R., Malakar, D., Khate, K., Sahu, S., Akshey, Y., and Mukesh, M. (2011). A comparative study on efficiency of adult fibroblast, putative embryonic stem cell and lymphocyte as donor cells for production of handmade cloned embryos in goat and characterization of putative ntES cells obtained from these embryos. Theriogenology 76, 851–863.
A comparative study on efficiency of adult fibroblast, putative embryonic stem cell and lymphocyte as donor cells for production of handmade cloned embryos in goat and characterization of putative ntES cells obtained from these embryos.Crossref | GoogleScholarGoogle Scholar | 21664668PubMed |

Eckersley-Maslin, M., Alda-Catalinas, C., Blotenburg, M., Kreibich, E., Krueger, C., and Reik, W. (2019). Dppa2 and Dppa4 directly regulate the Dux-driven zygotic transcriptional program. Genes Dev. 33, 194–208.
Dppa2 and Dppa4 directly regulate the Dux-driven zygotic transcriptional program.Crossref | GoogleScholarGoogle Scholar | 30692203PubMed |

Evans, M. J., and Kaufman, M. H. (1981). Establishment in culture of pluripotential cells. Nature 292, 154–156.
Establishment in culture of pluripotential cells.Crossref | GoogleScholarGoogle Scholar | 7242681PubMed |

Evans, M. J., Notarianni, E., Laurie, S., and Moor, R. M. (1990). Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine blastocysts. Theriogenology 33, 125–128.
Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine blastocysts.Crossref | GoogleScholarGoogle Scholar |

Ezashi, T., Telugu, B. P. V. L., Alexenko, A. P., Sachdev, S., Sinha, S., and Roberts, R. M. (2009). Derivation of induced pluripotent stem cells from pig somatic cells. Proc. Natl Acad. Sci. USA 106, 10993–10998.
Derivation of induced pluripotent stem cells from pig somatic cells.Crossref | GoogleScholarGoogle Scholar | 19541600PubMed |

Ezashi, T., Matsuyama, H., Telugu, B. P. V. L., and Roberts, R. M. (2011). Generation of colonies of induced trophoblast cells during standard reprogramming of porcine fibroblasts to induced pluripotent stem cells. Biol. Reprod. 85, 779–787.
Generation of colonies of induced trophoblast cells during standard reprogramming of porcine fibroblasts to induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 21734265PubMed |

Faunes, F., Hayward, P., Descalzo, S. M., Chatterjee, S. S., Balayo, T., Trott, J., Christoforou, A., Ferrer-Vaquer, A., Hadjantonakis, A.-K., Dasgupta, R., and Arias, A. M. (2013). A membrane-associated -catenin/Oct4 complex correlates with ground-state pluripotency in mouse embryonic stem cells. J. Cell Sci. 126, e1.
A membrane-associated -catenin/Oct4 complex correlates with ground-state pluripotency in mouse embryonic stem cells.Crossref | GoogleScholarGoogle Scholar |

Fujishiro, S., Nakano, K., Mizukami, Y., Azami, T., Arai, Y., Matsunari, H., Ishino, R., Nishimura, T., Watanabe, M., Abe, T., Watanabe, M., Umeyama, K., Furukawa, Y., Umeyama, K., Yamanaka, S., Ema, M., Hiroshi, N., and Hanazono, Y. (2013). Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development. Stem Cells Dev. 22, 473–482.
Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development.Crossref | GoogleScholarGoogle Scholar | 22889279PubMed |

Furusawa, T., Ohkoshi, K., Kimura, K., Matsuyama, S., Akagi, S., Kaneda, M., Ikeda, M., Hosoe, M., Kizaki, K., and Tokunaga, T. (2013). Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses. Biol. Reprod. 89, 1–12.
Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses.Crossref | GoogleScholarGoogle Scholar |

Gafni, O., Weinberger, L., Mansour, A. A., Manor, Y. S., Chomsky, E., Ben-Yosef, D., Kalma, Y., Viukov, S., Maza, I., Zviran, A., Rais, Y., Shipony, Z., Mukamel, Z., Krupalnik, V., Zerbib, M., Geula, S., Caspi, I., Schneir, D., Shwartz, T., Gilad, S., Amann-Zalcenstein, D., Benjamin, S., Amit, I., Tanay, A., Massarwa, R., Novershtern, N., and Hanna, J. H. (2013). Derivation of novel human ground state naive pluripotent stem cells. Nature 504, 282–286.
Derivation of novel human ground state naive pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 24172903PubMed |

Gao, Y., Guo, Y., Duan, A., Cheng, D., Zhang, S., and Wang, H. (2014). Optimization of culture conditions for maintaining porcine induced pluripotent stem cells. DNA Cell Biol. 33, 1–11.
Optimization of culture conditions for maintaining porcine induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 24256201PubMed |

Gao, X., Nowak-imialek, M., Chen, X., Chen, D., Herrmann, D., Ruan, D., Chun, A., Chen, H., Eckersley-maslin, M. A., Ahmad, S., Lee, Y. L., Kobayashi, T., Ryan, D., Zhong, J., Zhu, J., Wu, J., Huang, Y., Nie, T., Li, P., Wu, D., Pei, D., Zhang, Y., Lu, L., Yang, F., Kimber, S. J., Reik, W., Zou, X., Shang, Z., Lai, L., Surani, A., Tam, P. P. L., Ahmed, A., Shu, W., Yeung, B., and Teichmann, S. A. (2019). Establishment of porcine and human expanded potential stem cells. Nat. Cell Biol. 21, 687–699.
Establishment of porcine and human expanded potential stem cells.Crossref | GoogleScholarGoogle Scholar | 31160711PubMed |

Gerfen, R. W., and Wheeler, M. B. (1995). Isolation of embryonic cell-lines from porcine blastocysts. Anim. Biotechnol. 65, 429–434.
Isolation of embryonic cell-lines from porcine blastocysts.Crossref | GoogleScholarGoogle Scholar |

German, S. D., Campbell, K. H. S., Thornton, E., and Mclachlan, G. (2015). Ovine induced pluripotent stem cells are resistant. Cell. Reprogram. 17, 19–27.
Ovine induced pluripotent stem cells are resistant.Crossref | GoogleScholarGoogle Scholar | 25513856PubMed |

Gong, G., Roach, M. L., Jiang, L., Yang, X., and Tian, X. C. (2010). Culture conditions and enzymatic passaging of bovine ESC-like cells. Cell. Reprogram. 12, 151–160.
Culture conditions and enzymatic passaging of bovine ESC-like cells.Crossref | GoogleScholarGoogle Scholar | 20677930PubMed |

Goszczynski, D. E., Cheng, H., Demyda-Peyrás, S., Medrano, J. F., Wu, J., and Ross, P. J. (2019). In vitro breeding: application of embryonic stem cells to animal production. Biol. Reprod. 100, 885–895.
In vitro breeding: application of embryonic stem cells to animal production.Crossref | GoogleScholarGoogle Scholar | 30551176PubMed |

Gu, M., Nguyen, P. K., Lee, A. S., Xu, D., Hu, S., Plews, J. R., Han, L., Huber, B. C., Lee, W. H., Gong, Y., de Almeida, P. E., Lyons, J., Ikeno, F., Pacharinsak, C., Connolly, A. J., Gambhir, S. S., Robbins, R. C., Longaker, M. T., and Wu, J. C. (2012). Microfluidic single-cell analysis shows that porcine induced pluripotent stem cell-derived endothelial cells improve myocardial function by paracrine activation. Circ. Res. 111, 882–893.
Microfluidic single-cell analysis shows that porcine induced pluripotent stem cell-derived endothelial cells improve myocardial function by paracrine activation.Crossref | GoogleScholarGoogle Scholar | 22821929PubMed |

Gu, Q., Hao, J., Hai, T., Wang, J., Jia, Y., Kong, Q., Wang, J., Feng, C., Xue, B., Xie, B., Liu, S., Li, J., He, Y., Sun, J., Liu, L., Wang, L., Liu, Z., and Zhou, Q. (2014). Efficient generation of mouse ESCs-like pig induced pluripotent stem cells. Protein Cell 5, 338–342.
Efficient generation of mouse ESCs-like pig induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 24671760PubMed |

Guastali, M. D., Rosária, R., Maziero, D., Sudano, M. J., Rascado, S., Ferreira, J., Neto, L., Vergara, L. E., and Crocomo, L. F. (2014). Influence of culture medium and age of bovine blastocysts in established colonies of embryonic stem cells. J. Stem Cells 9, 225–234.
| 25942338PubMed |

Habas, R., and Dawid, I. B. (2005). Dishevelled and Wnt signaling: is the nucleus the final frontier? J. Biol. 4, 2.
Dishevelled and Wnt signaling: is the nucleus the final frontier?Crossref | GoogleScholarGoogle Scholar | 15720723PubMed |

Hall, V. J., Kristensen, M., Rasmussen, M. A., Ujhelly, O., Dinnyés, A., and Hyttel, P. (2012). Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells. Cell. Reprogram. 14, 204–216.
Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 22578162PubMed |

Han, X., Han, J., Ding, F., Cao, S., Lim, S. S., Dai, Y., Zhang, R., Zhang, Y., Lim, B., and Li, N. (2011). Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Res. 21, 1509–1512.
Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells.Crossref | GoogleScholarGoogle Scholar | 21826109PubMed |

Handyside, A., Hooper, M. L., Kaufman, M. H., and Wilmut, I. (1987). Towards the isolation of embryonal stem cell lines from the sheep. Rouxs Arch. Dev. Biol. 196, 185–190.
Towards the isolation of embryonal stem cell lines from the sheep.Crossref | GoogleScholarGoogle Scholar | 28305842PubMed |

Hanna, J. H., Saha, K., and Jaenisch, R. (2010). Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143, 508–525.
Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues.Crossref | GoogleScholarGoogle Scholar | 21074044PubMed |

Haraguchi, S., Kikuchi, K., Nakai, M., and Tokunaga, T. (2012). Establishment of self-renewing porcine embryonic stem cell-like cells by signal inhibition. J. Reprod. Dev. 58, 707–716.
Establishment of self-renewing porcine embryonic stem cell-like cells by signal inhibition.Crossref | GoogleScholarGoogle Scholar | 22972236PubMed |

He, X., Semenov, M., Tamai, K., and Zeng, X. (2004). LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development 131, 1663–1677.
LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way.Crossref | GoogleScholarGoogle Scholar | 15084453PubMed |

Hemberger, M., Nozaki, T., Winterhager, E., Yamamoto, H., Nakagama, H., Kamada, N., Suzuki, H., Ohta, T., Ohki, M., Masutani, M., and Cross, J. C. (2003). Parp1-deficiency induces differentiation of ES cells into trophoblast derivatives. Dev. Biol. 257, 371–381.
Parp1-deficiency induces differentiation of ES cells into trophoblast derivatives.Crossref | GoogleScholarGoogle Scholar | 12729565PubMed |

Heo, Y. T., Quan, X., Xu, Y., Baek, S., Choi, H., Kim, N., and Kim, J. (2014). CRISPR/Cas9 nuclease-mediated gene knock-in in bovine pluripotent stem cells and embryos. Stem Cells Dev. 24, 393–402.
CRISPR/Cas9 nuclease-mediated gene knock-in in bovine pluripotent stem cells and embryos.Crossref | GoogleScholarGoogle Scholar | 25209165PubMed |

Hikabe, O., Hamazaki, N., Nagamatsu, G., Obata, Y., Hirao, Y., Hamada, N., Shimamoto, S., Imamura, T., Nakashima, K., Saitou, M., and Hayashi, K. (2016). Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539, 299–303.
Reconstitution in vitro of the entire cycle of the mouse female germ line.Crossref | GoogleScholarGoogle Scholar | 27750280PubMed |

Hochereau-de Reviers, M. T., and Perreau, C. (1993). In vitro culture of embryonic disc cells from porcine blastocysts. Reprod. Nutr. Dev. 33, 475–483.
In vitro culture of embryonic disc cells from porcine blastocysts.Crossref | GoogleScholarGoogle Scholar | 8142030PubMed |

Hong, J., He, H., and Weiss, M. L. (2011). Derivation and characterization of embryonic stem cells lines derived from transgenic Fischer 344 and Dark Agouti rats. Stem Cells Dev. 21, 1571–1586.
Derivation and characterization of embryonic stem cells lines derived from transgenic Fischer 344 and Dark Agouti rats.Crossref | GoogleScholarGoogle Scholar | 21995453PubMed |

Hou, P, Li, Y., Zhang, X., Liu, C., Guan, J., Li, H., Zhao, T., Ye, J., Yang, W., Liu, K., Ge, J., Xu, J., Zhang, Q., Zhao, Y., and Deng, H. (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341, 651–654.
Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds.Crossref | GoogleScholarGoogle Scholar | 23868920PubMed |

Hou, D. R., Jin, Y., Nie, X. W., Zhang, M. L., Ta, N., Zhao, L. H., Yang, N., Chen, Y., Wu, Z. Q., Jiang, H. B., Li, Y. R., Sun, Q. Y., Dai, Y. F., and Li, R. F. (2016). Derivation of porcine embryonic stem-like cells from in vitro-produced blastocyst-stage embryos. Sci. Rep. 6, 25838.
Derivation of porcine embryonic stem-like cells from in vitro-produced blastocyst-stage embryos.Crossref | GoogleScholarGoogle Scholar | 27173828PubMed |

Huang, S.-M. A., Mishina, Y. M., Liu, S., Cheung, A., Stegmeier, F., Michaud, G. A., et al. (2009). Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620.
Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling.Crossref | GoogleScholarGoogle Scholar |

Huang, B., Li, T., Alonso-gonzalez, L., Gorre, R., Keatley, S., and Green, A. (2011). A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition. PLoS One 6, e24501.
A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition.Crossref | GoogleScholarGoogle Scholar | 22096478PubMed |

Huang, Y., Osorno, R., Tsakiridis, A., and Wilson, V. (2012). In vivo differentiation potential of epiblast stem cells revealed by chimeric embryo formation. Cell Rep. 2, 1571–1578.
In vivo differentiation potential of epiblast stem cells revealed by chimeric embryo formation.Crossref | GoogleScholarGoogle Scholar | 23200857PubMed |

Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A. E., and Melton, D. A. (2008). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 26, 795–797.
Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds.Crossref | GoogleScholarGoogle Scholar | 18568017PubMed |

Ishiuchi, T., Enriquez-Gasca, R., Mizutani, E., Boškoviä, A., Ziegler-Birling, C., Rodriguez-Terrones, D., Wakayama, T., Vaquerizas, J. M., and Torres-Padilla, M. E. (2015). Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat. Struct. Mol. Biol. 22, 662–671.
Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly.Crossref | GoogleScholarGoogle Scholar | 26237512PubMed |

Iwasaki, S., Campbell, K. H., Galli, C., and Akiyama, K. (2000). Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biol. Reprod. 62, 470–475.
Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos.Crossref | GoogleScholarGoogle Scholar | 10642589PubMed |

Jin, M., Wu, A., Dorzhin, S., Yue, Q., Ma, Y., and Liu, D. (2012). Culture conditions for bovine embryonic stem cell-like cells isolated from blastocysts after external fertilization. Cytotechnology 64, 379–389.
Culture conditions for bovine embryonic stem cell-like cells isolated from blastocysts after external fertilization.Crossref | GoogleScholarGoogle Scholar | 22438181PubMed |

Judson, R. L., Babiarz, J. E., Venere, M., and Blelloch, R. (2009). Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat. Biotechnol. 27, 459–461.
Embryonic stem cell-specific microRNAs promote induced pluripotency.Crossref | GoogleScholarGoogle Scholar | 19363475PubMed |

Jung, S. K., Kim, H. J., Kim, C. L., Lee, J. H., You, J. Y., Lee, E. S., Lim, J. M., Yun, S. J., Song, J. Y., and Cha, S. H. (2014). Enhancing effects of serum-rich and cytokine-supplemented culture conditions on developing blastocysts and deriving porcine parthenogenetic embryonic stem cells. J. Vet. Sci. 15, 519–528.
Enhancing effects of serum-rich and cytokine-supplemented culture conditions on developing blastocysts and deriving porcine parthenogenetic embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 24962410PubMed |

Kalkan, T., and Smith, A. (2014). Mapping the route from naive pluripotency to lineage specification. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130540.
Mapping the route from naive pluripotency to lineage specification.Crossref | GoogleScholarGoogle Scholar | 25349449PubMed |

Kalkan, T., Olova, N., Roode, M., Mulas, C., Lee, H. J., Nett, I., Marks, H., Walker, R., Stunnenberg, H. G., Lilley, K. S., Nichols, J., Reik, W., Bertone, P., and Smith, A. (2017). Tracking the embryonic stem cell transition from ground state pluripotency. Development 144, 1221–1234.
Tracking the embryonic stem cell transition from ground state pluripotency.Crossref | GoogleScholarGoogle Scholar | 28174249PubMed |

Kawaguchi, T., Tsukiyama, T., Kimura, K., Matsuyama, S., Minami, N., Yamada, M., and Imai, H. (2015). Generation of naïve bovine induced pluripotent stem cells using piggybac transposition of doxycycline-inducible transcription factors. PLoS One 10, e0135403.
Generation of naïve bovine induced pluripotent stem cells using piggybac transposition of doxycycline-inducible transcription factors.Crossref | GoogleScholarGoogle Scholar | 26444713PubMed |

Keefer, C. L., Pant, D., Blomberg, L., and Talbot, N. C. (2007). Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Anim. Reprod. Sci. 98, 147–168.
Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates.Crossref | GoogleScholarGoogle Scholar | 17097839PubMed |

Kim, H., Son, H., Kim, S., Lee, G., Park, C., Kang, S., Lee, B., Hwang, W., and Lee, C. (2007). Isolation and initial culture of porcine inner cell masses derived from in vitro-produced blastocysts. Zygote. 15, 55–63.
Isolation and initial culture of porcine inner cell masses derived from in vitro-produced blastocysts.Crossref | GoogleScholarGoogle Scholar | 17391546PubMed |

Kim, S., Kim, J. H., Lee, E., Jeong, Y. W., Hossein, M. S., Park, S. M., Park, S. W., Lee, J. Y., Jeong, Y. I., Kim, H. S., Kim, Y. W., Hyun, S. H., and Hwang, W. S. (2010). Establishment and characterization of embryonic stem-like cells from porcine somatic cell nuclear transfer blastocysts. Zygote 18, 93–101.
Establishment and characterization of embryonic stem-like cells from porcine somatic cell nuclear transfer blastocysts.Crossref | GoogleScholarGoogle Scholar | 20307349PubMed |

Kim, E. Y., Noh, E. J., Park, H. Y., Park, M. J., Noh, E. H., Lee, J. B., Jeong, C. J., Lee, D. S., Riu, K. Z., and Park, S. P. (2012). Establishment of bovine embryonic stem cell lines using a minimized feeder cell drop. Cell. Reprogram. 14, 520–529.
Establishment of bovine embryonic stem cell lines using a minimized feeder cell drop.Crossref | GoogleScholarGoogle Scholar | 23194455PubMed |

Kim, H., Wu, J., Ye, S., Tai, C.-I., Zhou, X., Yan, H., Li, P., Pera, M., and Ying, Q.-L. (2013). Modulation of β-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. Nat. Commun. 4, 2403.
Modulation of β-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal.Crossref | GoogleScholarGoogle Scholar | 23985566PubMed |

Kim, E., Hwang, S. U., Yoo, H., Yoon, J. D., Jeon, Y., Kim, H., Jeung, E. B., Lee, C. K., and Hyun, S. H. (2016). Putative embryonic stem cells derived from porcine cloned blastocysts using induced pluripotent stem cells as donors. Theriogenology 85, 601–616.
Putative embryonic stem cells derived from porcine cloned blastocysts using induced pluripotent stem cells as donors.Crossref | GoogleScholarGoogle Scholar | 26542134PubMed |

Kim, D., Jung, Y. G., and Roh, S. (2017). Microarray analysis of embryo-derived bovine pluripotent cells: the vulnerable state of bovine embryonic stem cells. PLoS One 12, e0173278.
Microarray analysis of embryo-derived bovine pluripotent cells: the vulnerable state of bovine embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 29287101PubMed |

Kobayashi, T., Yamaguchi, T., Hamanaka, S., Kato-Itoh, M., Yamazaki, Y., Ibata, M., Sato, H., Lee, Y. S., Usui, J., Knisely, A. S., Hirabayashi, M., and Nakauchi, H. (2010). Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142, 787–799.
Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 20813264PubMed |

Koh, D. W., Lawler, A. M., Poitras, M. F., Sasaki, M., Wattler, S., Nehls, M. C., Stoger, T., Poirier, G. G., Dawson, V. L., and Dawson, T. M. (2004). Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. Proc. Natl Acad. Sci. USA 101, 17699–17704.
Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality.Crossref | GoogleScholarGoogle Scholar | 15591342PubMed |

Kou, Z., Kang, L., Yuan, Y., Tao, Y., Zhang, Y., Wu, T., He, J., Wang, J., Liu, Z., and Gao, S. (2010). Mice cloned from induced pluripotent stem cells (iPSCs). Biol. Reprod. 83, 238–243.
Mice cloned from induced pluripotent stem cells (iPSCs).Crossref | GoogleScholarGoogle Scholar | 20427755PubMed |

Kues, W. A., Herrmann, D., Barg-Kues, B., Haridoss, S., Nowak-Imialek, M., Buchholz, T., Streeck, M., Grebe, A., Grabundzija, I., Merkert, S., Martin, U., Hall, V. J., Rasmussen, M. A., Ivics, Z., Hyttel, P., and Niemann, H. (2013). Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells. Stem Cells Dev. 22, 124–135.
Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 22989381PubMed |

Kühl, M., Sheldahl, L. C., Park, M., Miller, J. R., and Moon, R. T. (2000). The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet. 16, 279–283.
The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape.Crossref | GoogleScholarGoogle Scholar | 10858654PubMed |

Kumar De, A., Malakar, D., Akshey, Y. S., Jena, M. K., and Dutta, R. (2011). Isolation and characterization of embryonic stem cell-like cells from in vitro produced goat (Capra hircus) embryos. Anim. Biotechnol. 22, 181–196.
Isolation and characterization of embryonic stem cell-like cells from in vitro produced goat (Capra hircus) embryos.Crossref | GoogleScholarGoogle Scholar | 22132812PubMed |

Kurek, D., Neagu, A., Tastemel, M., Tüysüz, N., Lehmann, J., van de Werken, H. J. G., Philipsen, S., van der Linden, R., Maas, A., van IJcken, W. F. J., Drukker, M., and ten Berge, D. (2015). Endogenous WNT signals mediate BMP-induced and spontaneous differentiation of epiblast stem cells and human embryonic stem cells. Stem Cell Reports 4, 114–128.
Endogenous WNT signals mediate BMP-induced and spontaneous differentiation of epiblast stem cells and human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 25544567PubMed |

Kuroiwa, Y., Kasinathan, P., Choi, Y. J., Naeem, R., Tomizuka, K., Sullivan, E. J., Knott, J. G., Duteau, A., Goldsby, R. A., Osborne, B. A., Ishida, I., and Robl, J. M. (2002). Cloned transchromosomic calves producing human immunoglobulin. Nat. Biotechnol. 20, 889–894.
Cloned transchromosomic calves producing human immunoglobulin.Crossref | GoogleScholarGoogle Scholar | 12172556PubMed |

Kuroiwa, Y., Kasinathan, P., Matsushita, H., Sathiyaselan, J., Sullivan, E. J., Kakitani, M., Tomizuka, K., Ishida, I., and Robl, J. M. (2004). Sequential targeting of the genes encoding immunoglobulin-μ and prion protein in cattle. Nat. Genet. 36, 775–780.
Sequential targeting of the genes encoding immunoglobulin-μ and prion protein in cattle.Crossref | GoogleScholarGoogle Scholar | 15184897PubMed |

Kwon, D. K., Hong, S. G., Park, H. J., Kang, J. T., Koo, O. J., and Lee, B. C. (2009). Epiblast isolation by a new four stage method (peeling) from whole bovine cloned blastocysts. Cell Biol. Int. 33, 309–317.
Epiblast isolation by a new four stage method (peeling) from whole bovine cloned blastocysts.Crossref | GoogleScholarGoogle Scholar | 19166954PubMed |

Lanza, R. P., Cibelli, J. B., Blackwell, C., Cristofalo, V. J., Francis, M. K., Baerlocher, G. M., Mak, J., Schertzer, M., Chavez, E. A., Sawyer, N., Lansdorp, P. M., and West, M. D. (2000). Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Science 288, 665–669.
Extension of cell life-span and telomere length in animals cloned from senescent somatic cells.Crossref | GoogleScholarGoogle Scholar | 10784448PubMed |

Li, M., Zhang, D., Hou, Y., Jiao, L., Zheng, X., and Wang, W.-H. (2003). Isolation and culture of embryonic stem cells from porcine blastocysts. Mol. Reprod. Dev. 65, 429–434.
Isolation and culture of embryonic stem cells from porcine blastocysts.Crossref | GoogleScholarGoogle Scholar | 12840816PubMed |

Li, M., Li, Y. H., Hou, Y., Sun, X. F., Sun, Q., and Wang, W. H. (2004). Isolation and culture of pluripotent cells from in vitro produced porcine embryos. Zygote 12, 43–48.
Isolation and culture of pluripotent cells from in vitro produced porcine embryos.Crossref | GoogleScholarGoogle Scholar | 15214579PubMed |

Li, Y., Cang, M., Lee, A. S., Zhang, K., and Liu, D. (2011a). Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors. PLoS One 6, e15947.
Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors.Crossref | GoogleScholarGoogle Scholar | 22205966PubMed |

Li, Y., Zhang, Q., Yin, X., Yang, W., Du, Y., Hou, P., Ge, J., Liu, C., Zhang, W., Zhang, X., Wu, Y., Li, H., Liu, K., Wu, C., Song, Z., Zhao, Y., Shi, Y., and Deng, H. (2011b). Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res. 21, 196–204.
Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules.Crossref | GoogleScholarGoogle Scholar | 20956998PubMed |

Lim, M. L., Vassiliev, I., Richings, N. M., Firsova, A. B., Zhang, C., and Verma, P. J. (2011). A novel, efficient method to derive bovine and mouse embryonic stem cells with in vivo differentiation potential by treatment with 5-azacytidine. Theriogenology 76, 133–142.
A novel, efficient method to derive bovine and mouse embryonic stem cells with in vivo differentiation potential by treatment with 5-azacytidine.Crossref | GoogleScholarGoogle Scholar | 21396694PubMed |

Lin, Y., Kuo, K., Wuputra, K., Lin, S., and Ku, C. (2014). Bovine induced pluripotent stem cells are more resistant to apoptosis than testicular cells in response to mono-(2-ethylhexyl) phthalate. Int. J. Mol. Sci. 15, 5011–5031.
Bovine induced pluripotent stem cells are more resistant to apoptosis than testicular cells in response to mono-(2-ethylhexyl) phthalate.Crossref | GoogleScholarGoogle Scholar | 24658443PubMed |

Liu, J., Balehosur, D., Murray, B., Kelly, J. M., Sumer, H., and Verma, P. J. (2012a). Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology 77, 338–346.e1.
Generation and characterization of reprogrammed sheep induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 21958637PubMed |

Liu, K., Ji, G., Mao, J., Liu, M., Wang, L., Chen, C., and Liu, L. (2012b). Generation of porcine-induced pluripotent stem cells by using OCT4 and KLF4 porcine factors. Cell. Reprogram. 14, 505–513.
Generation of porcine-induced pluripotent stem cells by using OCT4 and KLF4 porcine factors.Crossref | GoogleScholarGoogle Scholar | 23035653PubMed |

Liu, Y., Yang, J. Y., Lu, Y., Yu, P., Dove, C. R., Hutcheson, J. M., Mumaw, J. L., Stice, S. L., and West, F. D. (2013). α-1,3-Galactosyltransferase knockout pig induced pluripotent stem cells: a cell source for the production of xenotransplant pigs. Cell. Reprogram. 15, 107–116.
α-1,3-Galactosyltransferase knockout pig induced pluripotent stem cells: a cell source for the production of xenotransplant pigs.Crossref | GoogleScholarGoogle Scholar | 23402576PubMed |

Lluis, F., Pedone, E., Pepe, S., and Cosma, M. P. (2008). Periodic activation of Wnt/β-catenin signaling enhances somatic cell reprogramming mediated by cell fusion. Cell Stem Cell 3, 493–507.
Periodic activation of Wnt/β-catenin signaling enhances somatic cell reprogramming mediated by cell fusion.Crossref | GoogleScholarGoogle Scholar | 18983965PubMed |

Lu, F., Liu, Y., Jiang, L., Yamaguchi, S., and Zhang, Y. (2014). Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev. 28, 2103–2119.
Role of Tet proteins in enhancer activity and telomere elongation.Crossref | GoogleScholarGoogle Scholar | 25223896PubMed |

Ludwig, T. E., Bergendahl, V., Levenstein, M. E., Yu, J. Y., Probasco, M. D., and Thomson, J. A. (2006). Feeder-independent culture of human embryonic stem cells. Nat. Methods 3, 637–646.
Feeder-independent culture of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 16862139PubMed |

Lyashenko, N., Winter, M., Migliorini, D., Biechele, T., Moon, R. T., and Hartmann, C. (2011). Differential requirement for the dual functions of β-catenin in embryonic stem cell self-renewal and germ layer formation. Nat. Cell Biol. 13, 753–761.
Differential requirement for the dual functions of β-catenin in embryonic stem cell self-renewal and germ layer formation.Crossref | GoogleScholarGoogle Scholar | 21685890PubMed |

Ma, K., Song, G., An, X., Fan, A., Tan, W., Tang, B., Zhang, X., and Li, Z. (2014). miRNAs promote generation of porcine-induced pluripotent stem cells. Mol. Cell. Biochem. 389, 209–218.
miRNAs promote generation of porcine-induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 24464032PubMed |

MacDonald, B., Tamai, K., and He, X. (2010). Wnt/B-catenin siganlling: components, machanisms and diseases. Dev. Cell 17, 9–26.
Wnt/B-catenin siganlling: components, machanisms and diseases.Crossref | GoogleScholarGoogle Scholar |

Macfarlan, T. S., Gifford, W. D., Driscoll, S., Lettieri, K., Rowe, H. M., Bonanomi, D., Firth, A., Singer, O., Trono, D., and Pfaff, S. L. (2012). Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63.
Embryonic stem cell potency fluctuates with endogenous retrovirus activity.Crossref | GoogleScholarGoogle Scholar | 22722858PubMed |

Madeja, Z. E., Hryniewicz, K., Orsztynowicz, M., Pawlak, P., and Perkowska, A. (2015). WNT/β-catenin signaling affects cell lineage and pluripotency-specific gene expression in bovine blastocysts: prospects for bovine embryonic stem cell derivation. Stem Cells Dev. 24, 2437–2454.
WNT/β-catenin signaling affects cell lineage and pluripotency-specific gene expression in bovine blastocysts: prospects for bovine embryonic stem cell derivation.Crossref | GoogleScholarGoogle Scholar | 26119137PubMed |

Malik, N., and Rao, M. S. (2013). A review of the methods for human iPSC derivation. Methods Mol. Biol. 997, 23–33.
A review of the methods for human iPSC derivation.Crossref | GoogleScholarGoogle Scholar | 23546745PubMed |

Mao, J., Zhang, Q., Deng, W., Wang, H., Liu, K., Fu, H., Zhao, Q., Wang, X., and Liu, L. (2017). Epigenetic modifiers facilitate induction and pluripotency of porcine iPSCs. Stem Cell Rep. 8, 11–20.
Epigenetic modifiers facilitate induction and pluripotency of porcine iPSCs.Crossref | GoogleScholarGoogle Scholar |

Marson, A., Foreman, R., Chevalier, B., Bilodeau, S., Kahn, M., Young, R. A., and Jaenisch, R. (2008). Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell 3, 132–135.
Wnt signaling promotes reprogramming of somatic cells to pluripotency.Crossref | GoogleScholarGoogle Scholar | 18682236PubMed |

Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638.
Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.Crossref | GoogleScholarGoogle Scholar | 6950406PubMed |

Maruotti, J., Muñoz, M., Degrelle, S. A., Gómez, E., Louet, C., Monforte, C. D., de Longchamp, P. H., Brochard, V., Hue, I., Caamaño, J. N., and Jouneau, A. (2012). Efficient derivation of bovine embryonic stem cells needs more than active core pluripotency factors. Mol. Reprod. Dev. 79, 461–477.
Efficient derivation of bovine embryonic stem cells needs more than active core pluripotency factors.Crossref | GoogleScholarGoogle Scholar | 22573702PubMed |

Matsushita, H., Sano, A., Wu, H., Jiao, J. A., Kasinathan, P., Sullivan, E. J., Wang, Z., and Kuroiwa, Y. (2014). Triple immunoglobulin gene knockout transchromosomic cattle: bovine lambda cluster deletion and its effect on fully human polyclonal antibody production. PLoS One 9, e99279.
Triple immunoglobulin gene knockout transchromosomic cattle: bovine lambda cluster deletion and its effect on fully human polyclonal antibody production.Crossref | GoogleScholarGoogle Scholar | 25405999PubMed |

Meinecke-Tillmann, S., and Meinecke, B. (1996). Isolation of ES-like cell lines from ovine and caprine preimplantation embryos. J. Anim. Breed. Genet. 113, 413–426.
Isolation of ES-like cell lines from ovine and caprine preimplantation embryos.Crossref | GoogleScholarGoogle Scholar |

Melton, C., Judson, R. L., and Blelloch, R. (2010). Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463, 621–626.
Opposing microRNA families regulate self-renewal in mouse embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 20054295PubMed |

Mitalipova, M., Beyhan, Z., and First, N. L. (2004). Pluripotency of bovine embryonic cell line derived from precompacting embryos. Cloning 3, 59–67.
Pluripotency of bovine embryonic cell line derived from precompacting embryos.Crossref | GoogleScholarGoogle Scholar |

Miyabayashi, T., Teo, J.-L., Yamamoto, M., McMillan, M., Nguyen, C., and Kahn, M. (2007). Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proc. Natl Acad. Sci. USA 104, 5668–5673.
Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency.Crossref | GoogleScholarGoogle Scholar | 17372190PubMed |

Miyoshi, K., Taguchi, Y., Sendai, Y., Hoshi, H., and Sato, E. (2000). Establishment of a porcine cell line from in vitro-produced blastocysts and transfer of the cells into enucleated oocytes. Biol. Reprod. 62, 1640–1646.
Establishment of a porcine cell line from in vitro-produced blastocysts and transfer of the cells into enucleated oocytes.Crossref | GoogleScholarGoogle Scholar | 10819766PubMed |

Montserrat, N., Bahima, E. G., Batlle, L., Häfner, S., Rodrigues, A. M. C., González, F., and Izpisúa Belmonte, J. C. (2011). Generation of pig iPS cells: a model for cell therapy. J. Cardiovasc. Transl. Res. 4, 121–130.
Generation of pig iPS cells: a model for cell therapy.Crossref | GoogleScholarGoogle Scholar | 21088946PubMed |

Montserrat, N., de Oñate, L., Garreta, E., González, F., Adamo, A., Eguizábal, C., Häfner, S., Vassena, R., and Izpisua Belmonte, J. C. (2012). Generation of feeder-free pig induced pluripotent stem cells without Pou5f1. Cell Transplant. 21, 815–825.
Generation of feeder-free pig induced pluripotent stem cells without Pou5f1.Crossref | GoogleScholarGoogle Scholar | 21944493PubMed |

Moore  K., and Piedrahita  J. A. (1997 ). The effects of human leukemia inhibitory factor (HLIF) and culture medium on in vitro differentiation of cultured porcine inner cell mass (PICM). In Vitro Cell. Dev. Biol. Animal 33 , 627110.1007/S11626-997-0023-4

Morgani, S., Nichols, J., and Hadjantonakis, A. K. (2017). The many faces of pluripotency: in vitro adaptations of a continuum of in vivo states. BMC Dev. Biol. 17, 7.
The many faces of pluripotency: in vitro adaptations of a continuum of in vivo states.Crossref | GoogleScholarGoogle Scholar | 28610558PubMed |

Muñoz, M., Rodríguez, A., De Frutos, C., Caamaño, J. N., Díez, C., Facal, N., and Gómez, E. (2008). Conventional pluripotency markers are unspecific for bovine embryonic-derived cell-lines. Theriogenology 69, 1159–1164.
Conventional pluripotency markers are unspecific for bovine embryonic-derived cell-lines.Crossref | GoogleScholarGoogle Scholar | 18420262PubMed |

Nagy, A., Gócza, E., Diaz, E. M., Prideaux, V. R., Iványi, E., Markkula, M., and Rossant, J. (1990). Embryonic stem cells alone are able to support fetal development in the mouse. Development 110, 815–821.
| 2088722PubMed |

Nichols, J., and Smith, A. (2009). Naive and primed pluripotent states. Cell Stem Cell 4, 487–492.
Naive and primed pluripotent states.Crossref | GoogleScholarGoogle Scholar | 19497275PubMed |

Nichols, J., and Smith, A. (2011). The origin and identity of embryonic stem cells. Development 138, 3–8.
The origin and identity of embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 21138972PubMed |

Nong, W., Xie, T. S., Li, L. Y., Lu, A. G., Mo, J., Gou, Y. F., Lan, G., Jiang, H., Len, J., Li, M. M., Jiang, Q. Y., and Huang, B. (2015). Qualitative analyses of protein phosphorylation in bovine pluripotent stem cells generated from embryonic fibroblasts. Reprod. Domest. Anim. 50, 989–998.
Qualitative analyses of protein phosphorylation in bovine pluripotent stem cells generated from embryonic fibroblasts.Crossref | GoogleScholarGoogle Scholar | 26493745PubMed |

Notarianni, E., Galli, C., Laurie, S., Moor, R. M., and Evans, M. J. (1991). Derivation of pluripotent, embryonic cell lines from the pig and sheep. J. Reprod. Fertil. Suppl. 43, 255–260.
| 1843344PubMed |

Oback, B., and Wells, D. N. (2007). Donor cell differentiation, reprogramming, and cloning efficiency: elusive or illusive correlation? Mol. Reprod. Dev. 74, 646–654.
Donor cell differentiation, reprogramming, and cloning efficiency: elusive or illusive correlation?Crossref | GoogleScholarGoogle Scholar | 17039535PubMed |

Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., and Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–953.
Generation of mouse induced pluripotent stem cells without viral vectors.Crossref | GoogleScholarGoogle Scholar | 18845712PubMed |

Ozawa, M., Sakatani, M., Hankowski, K. E., Terada, N., Dobbs, K. B., and Hansen, P. J. (2012). Importance of culture conditions during the morula-to-blastocyst period on capacity of inner cell-mass cells of bovine blastocysts for establishment of self-renewing pluripotent cells. Theriogenology 78, 1243–1251.e2.
Importance of culture conditions during the morula-to-blastocyst period on capacity of inner cell-mass cells of bovine blastocysts for establishment of self-renewing pluripotent cells.Crossref | GoogleScholarGoogle Scholar | 22898023PubMed |

Panasophonkul, S., Tharasanit, T., and Techakumphu, M. (2010). Establishment of porcine embryonic stem-like cells from parthenogenetic and in vivo derived embryos. Thai journal of Veterinary Medicine 40, 273–280.

Panasophonkul, S., Tharasanit, T., and Techakumphu, M. (2012). Effect of skin fibroblast-derived allogeneic feeder cells on porcine ES-like cell establishment. J. Vet. Med. Sci. 74, 1243–1251.
Effect of skin fibroblast-derived allogeneic feeder cells on porcine ES-like cell establishment.Crossref | GoogleScholarGoogle Scholar | 22673718PubMed |

Pant, D., and Keefer, C. L. (2009). Expression of pluripotency-related genes during bovine inner cell mass explant culture. Cloning Stem Cells 11, 355–365.
Expression of pluripotency-related genes during bovine inner cell mass explant culture.Crossref | GoogleScholarGoogle Scholar | 19594391PubMed |

Park, K.-M., Cha, S.-H., Ahn, C., and Woo, H.-M. (2013a). Generation of porcine induced pluripotent stem cells and evaluation of their major histocompatibility complex protein expression in vitro. Vet. Res. Commun. 37, 293–301.
Generation of porcine induced pluripotent stem cells and evaluation of their major histocompatibility complex protein expression in vitro.Crossref | GoogleScholarGoogle Scholar | 23975685PubMed |

Park, J.-K., Kim, H.-S., Uh, K.-J., Choi, K.-H., Kim, H.-M., Lee, T., Yang, B.-C., Kim, H.-J., Ka, H.-H., Kim, H., and Lee, C.-K. (2013b). Primed pluripotent cell lines derived from various embryonic origins and somatic cells in pig. PLoS One 8, e52481.
Primed pluripotent cell lines derived from various embryonic origins and somatic cells in pig.Crossref | GoogleScholarGoogle Scholar | 24250822PubMed |

Park, S., Kim, D., Jung, Y., and Roh, S. (2015). Thiazovivin, a Rho kinase inhibitor, improves stemness maintenance of embryo-derived stem-like cells under chemically defined culture conditions in cattle. Anim. Reprod. Sci. 161, 47–57.
Thiazovivin, a Rho kinase inhibitor, improves stemness maintenance of embryo-derived stem-like cells under chemically defined culture conditions in cattle.Crossref | GoogleScholarGoogle Scholar | 26307658PubMed |

Pashaiasl, M., Khodadadi, K., Holland, M. K., and Verma, P. J. (2010). The efficient generation of cell lines from bovine parthenotes. Cell. Reprogram. 12, 571–579.
The efficient generation of cell lines from bovine parthenotes.Crossref | GoogleScholarGoogle Scholar | 20936907PubMed |

Pashaiasl, M., Khodadadi, K., Richings, N. M., Holland, M. K., and Verma, P. J. (2013). Cryopreservation and long-term maintenance of bovine embryo-derived cell lines. Reprod. Fertil. Dev. 25, 707–718.
Cryopreservation and long-term maintenance of bovine embryo-derived cell lines.Crossref | GoogleScholarGoogle Scholar | 22951106PubMed |

Pawar, S. S., Malakar, D., De, A. K., and Akshey, Y. S. (2009). Stem cell-like outgrowths from in vitro fertilized goat blastocysts. Indian J. Exp. Biol. 47, 635–642.
| 19775069PubMed |

Percharde, M., Lin, C. J., Yin, Y., Guan, J., Peixoto, G. A., Bulut-Karslioglu, A., Biechele, S., Huang, B., Shen, X., and Ramalho-Santos, M. (2018). A LINE1–nucleolin partnership regulates early development and ESC identity. Cell 174, 391–405.
A LINE1–nucleolin partnership regulates early development and ESC identity.Crossref | GoogleScholarGoogle Scholar | 29937225PubMed |

Piedrahita, J. A., Anderson, G. B., and Bondurant, R. H. (1990a). On the isolation of embryonic stem cells: comparative behavior of murine, porcine and ovine embryos. Theriogenology 34, 879–901.
On the isolation of embryonic stem cells: comparative behavior of murine, porcine and ovine embryos.Crossref | GoogleScholarGoogle Scholar | 16726890PubMed |

Piedrahita, J. A., Anderson, G. B., and Bondurant, R. H. (1990b). Influence of feeder layer type on the efficiency of isolation of porcine embryo-derived cell lines. Theriogenology 34, 865–877.
Influence of feeder layer type on the efficiency of isolation of porcine embryo-derived cell lines.Crossref | GoogleScholarGoogle Scholar | 16726889PubMed |

Polejaeva, I. A., White, K. L., Ellis, L. C., and Reed, W. A. (1995). Theriogenology 43, 300.
Crossref | GoogleScholarGoogle Scholar |

Ren, J., Pak, Y., He, L., Qian, L., Gu, Y., Li, H., Rao, L., Liao, J., Cui, C., Xu, X., Zhou, J., Ri, H., and Xiao, L. (2011). Generation of hircine-induced pluripotent stem cells by somatic cell reprogramming. Cell Res. 21, 849–853.
Generation of hircine-induced pluripotent stem cells by somatic cell reprogramming.Crossref | GoogleScholarGoogle Scholar | 21403680PubMed |

Roach, M., Wang, L., Yang, X., and Tian, X. C. (2006). Bovine embryonic stem cells. Methods Enzymol. 418, 21–37.
Bovine embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 17141027PubMed |

Roberts, R. M., Yuan, Y., Genovese, N., and Ezashi, T. (2015). Livestock models for exploiting the promise of pluripotent stem cells. ILAR J. 56, 74–82.
Livestock models for exploiting the promise of pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 25991700PubMed |

Robinton, D. A., and Daley, G. Q. (2012). The promise of induced pluripotent stem cells in research and therapy. Nature 481, 295–305.
The promise of induced pluripotent stem cells in research and therapy.Crossref | GoogleScholarGoogle Scholar | 22258608PubMed |

Rodríguez, A., Allegrucci, C., and Alberio, R. (2012). Modulation of pluripotency in the porcine embryo and iPS cells. PLoS One 7, e49079.
Modulation of pluripotency in the porcine embryo and iPS cells.Crossref | GoogleScholarGoogle Scholar | 23239979PubMed |

Rony, I. K., Baten, A., Bloomfield, J. A., Islam, M. E., Billah, M. M., and Islam, K. D. (2015). Inducing pluripotency in vitro: recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming. Cell Prolif. 48, 140–156.
Inducing pluripotency in vitro: recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming.Crossref | GoogleScholarGoogle Scholar | 25643745PubMed |

Rossant, J. (2008). Stem cells and early lineage development. Cell 132, 527–531.
Stem cells and early lineage development.Crossref | GoogleScholarGoogle Scholar | 18295568PubMed |

Saito, S., Strelchenko, N., and Niemann, H. (1992). Bovine embryonic stem cell-like cell lines cultured over several passages. Roux’s Arch Dev Biol 201, 134–141.

Saito, S., Sawai, K., Ugai, H., Moriyasu, S., Minamihashi, A., Yamamoto, Y., Hirayama, H., Kageyama, S., Pan, J., Murata, T., Kobayashi, Y., Obata, Y., and Yokoyama, K. K. (2003). Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochem. Biophys. Res. Commun. 309, 104–113.
Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells.Crossref | GoogleScholarGoogle Scholar | 12943670PubMed |

Sandmaier, S. E. S., Nandal, A., Powell, A., Garrett, W., Blomberg, L., Donovan, D. M., Talbot, N., and Telugu, B. P. (2015). Generation of induced pluripotent stem cells from domestic goats. Mol. Reprod. Dev. 82, 709–721.
Generation of induced pluripotent stem cells from domestic goats.Crossref | GoogleScholarGoogle Scholar |

Sanna, D., Sanna, A., Mara, L., Pilichi, S., Mastinu, A., Chessa, F., Pani, L., and Dattena, M. (2013). Oct4 expression in in-vitro-produced sheep blastocysts and embryonic-stem-like cells. Cell Biol. Int. 34, 53–60.
Oct4 expression in in-vitro-produced sheep blastocysts and embryonic-stem-like cells.Crossref | GoogleScholarGoogle Scholar |

Sartori, C., DiDomenico, A. I., Thomson, A. J., Milne, E., Lillico, S. G., Burdon, T. G., and Whitelaw, C. B. A. (2012). Ovine-induced pluripotent stem cells can contribute to chimeric lambs. Cell. Reprogram. 14, 8–19.
Ovine-induced pluripotent stem cells can contribute to chimeric lambs.Crossref | GoogleScholarGoogle Scholar | 22217199PubMed |

Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., and Brivanlou, A. H. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55–63.
Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor.Crossref | GoogleScholarGoogle Scholar | 14702635PubMed |

Shiue, Y.-L., Liou, J.-F., Shiau, J.-W., Yang, J.-R., Chen, Y.-H., Tailiu, J.-J., and Chen, L.-R. (2006). In vitro culture period but not the passage number influences the capacity of chimera production of inner cell mass and its deriving cells from porcine embryos. Anim. Reprod. Sci. 93, 134–143.
In vitro culture period but not the passage number influences the capacity of chimera production of inner cell mass and its deriving cells from porcine embryos.Crossref | GoogleScholarGoogle Scholar | 16143474PubMed |

Silva, J., Barrandon, O., Nichols, J., Kawaguchi, J., Theunissen, T. W., and Smith, A. (2008). Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol. 6, e253.
Promotion of reprogramming to ground state pluripotency by signal inhibition.Crossref | GoogleScholarGoogle Scholar | 18942890PubMed |

Siriboon, C., Lin, Y. H., Kere, M., Da Chen, C., Chen, L. R., Chen, C. H., Tu, C. F., Lo, N. W., and Ju, J. C. (2015). Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning. PLoS One 10, e0118165.
Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning.Crossref | GoogleScholarGoogle Scholar | 25680105PubMed |

Smith, A. (2017). Formative pluripotency: the executive phase in a developmental continuum. Development 144, 365–373.
Formative pluripotency: the executive phase in a developmental continuum.Crossref | GoogleScholarGoogle Scholar | 28143843PubMed |

Song, H., Li, H., Huang, M., Xu, D., Gu, C., Wang, Z., Dong, F., and Wang, F. (2013). Induced pluripotent stem cells from goat fibroblasts. Mol. Reprod. Dev. 80, 1009–1017.
Induced pluripotent stem cells from goat fibroblasts.Crossref | GoogleScholarGoogle Scholar | 24123501PubMed |

Song, H., Li, H., Huang, M., Xu, D., Wang, Z., and Wang, F. (2016). Big animal cloning using transgenic induced pluripotent stem cells: a case study of goat transgenic induced pluripotent stem cells. Cell. Reprogram. 18, 37–47.
Big animal cloning using transgenic induced pluripotent stem cells: a case study of goat transgenic induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 26836033PubMed |

Soto, D. A., and Ross, P. J. (2016). Pluripotent stem cells and livestock genetic engineering. Transgenic Res. 25, 289–306.
Pluripotent stem cells and livestock genetic engineering.Crossref | GoogleScholarGoogle Scholar | 26894405PubMed |

Stice, S. L., Strelchenko, N. S., Keefer, C. L., and Matthews, L. (1996). Pluripotent bovine embryonic cell lines direct embryonic development following nuclear transfer. Biol. Reprod. 54, 100–110.
Pluripotent bovine embryonic cell lines direct embryonic development following nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 8838006PubMed |

Strojek, R. M., Reed, M. A., Hoover, J. L., and Wagner, T. E. (1990). A method for cultivating morphologically undifferentiated embryonic stem cells from porcine blastocysts. Theriogenology 33, 901–913.
A method for cultivating morphologically undifferentiated embryonic stem cells from porcine blastocysts.Crossref | GoogleScholarGoogle Scholar | 16726786PubMed |

Sugimoto, M., Kondo, M., Koga, Y., Shiura, H., Ikeda, R., Hirose, M., Ogura, A., Murakami, A., Yoshiki, A., Chuva de Sousa Lopes, S. M., and Abe, K. (2015). A simple and robust method for establishing homogeneous mouse epiblast stem cell lines by wnt inhibition. Stem Cell Reports 4, 744–757.
A simple and robust method for establishing homogeneous mouse epiblast stem cell lines by wnt inhibition.Crossref | GoogleScholarGoogle Scholar | 25818811PubMed |

Sumer, H., Liu, J., Lim, M. L., Khodadadi, K., and Verrna, P. J. (2011). NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J. Anim. Sci. 89, 2708–2716.
NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts.Crossref | GoogleScholarGoogle Scholar | 21478453PubMed |

Sumi, T., Oki, S., Kitajima, K., and Meno, C. (2013). Epiblast ground state is controlled by canonical Wnt/β-catenin signaling in the postimplantation mouse embryo and epiblast stem cells. PLoS One 8, e63378.
Epiblast ground state is controlled by canonical Wnt/β-catenin signaling in the postimplantation mouse embryo and epiblast stem cells.Crossref | GoogleScholarGoogle Scholar | 23691040PubMed |

Tachibana, M., Sparman, M., Ramsey, C., Ma, H., Lee, H. S., Penedo, M. C. T., and Mitalipov, S. (2012). Generation of chimeric rhesus monkeys. Cell 48, 285–295.
Generation of chimeric rhesus monkeys.Crossref | GoogleScholarGoogle Scholar |

Tai, D., Liu, P., Gao, J., Jin, M., Xu, T., Zuo, Y., Liang, H., and Liu, D. (2015). Generation of Arbas cashmere goat induced pluripotent stem cells through fibroblast reprogramming. Cell. Reprogram. 17, 297–305.
Generation of Arbas cashmere goat induced pluripotent stem cells through fibroblast reprogramming.Crossref | GoogleScholarGoogle Scholar | 26731591PubMed |

Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Crossref | GoogleScholarGoogle Scholar | 16904174PubMed |

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872.
Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Crossref | GoogleScholarGoogle Scholar | 18035408PubMed |

Talbot, N. C., Rexroad, C., Pursel, V., and Powell, A. (1993a). Alkaline phosphatase staining of pig and sheep epiblast cells in culture. Mol. Reprod. Dev. 36, 139–147.
Alkaline phosphatase staining of pig and sheep epiblast cells in culture.Crossref | GoogleScholarGoogle Scholar | 7504922PubMed |

Talbot, N. C., Rexroad, C., Pursel, V., Powell, A., and Nel, N. (1993b). Culturing the epiblast cells of the pig blastocyst. In Vitro Cell. Dev. Biol. Anim. 29, 543–554.
Culturing the epiblast cells of the pig blastocyst.Crossref | GoogleScholarGoogle Scholar |

Talbot, N. C., Powell, A. M., and Rexroad, C. E. (1995). In vitro pluripotency of epiblasts derived from bovine blastocysts. Mol Reprod Dev 42, 35–52.
In vitro pluripotency of epiblasts derived from bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 8562049PubMed |

Talluri, T. R., Kumar, D., Glage, S., Garrels, W., Ivics, Z., Debowski, K., Behr, R., Niemann, H., and Kues, W. A. (2015). Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming. Cell. Reprogram. 17, 131–140.
Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming.Crossref | GoogleScholarGoogle Scholar | 25826726PubMed |

Telugu, B. P. V. L., Ezashi, T., and Roberts, R. M. (2010a). The promise of stem cell research in pigs and other ungulate species. Stem Cell Rev. Rep. 6, 31–41.
The promise of stem cell research in pigs and other ungulate species.Crossref | GoogleScholarGoogle Scholar |

Telugu, B. P. V. L., Ezashi, T., and Roberts, R. M. (2010b). Porcine induced pluripotent stem cells analogous to naïve and primed embryonic stem cells of the mouse. Int. J. Dev. Biol. 54, 1703–1711.
Porcine induced pluripotent stem cells analogous to naïve and primed embryonic stem cells of the mouse.Crossref | GoogleScholarGoogle Scholar |

Telugu, B. P. V. L., Ezashi, T., Sinha, S., Alexenko, A. P., Spate, L., Prather, R. S., and Roberts, R. M. (2011). Leukemia inhibitory factor (LIF)-dependent, pluripotent stem cells established from inner cell mass of porcine embryos. J. Biol. Chem. 286, 28948–28953.
Leukemia inhibitory factor (LIF)-dependent, pluripotent stem cells established from inner cell mass of porcine embryos.Crossref | GoogleScholarGoogle Scholar |

ten Berge, D., Kurek, D., Blauwkamp, T., Koole, W., Maas, A., Eroglu, E., Siu, R. K., and Nusse, R. (2011). Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat. Cell Biol. 13, 1070–1075.
Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells.Crossref | GoogleScholarGoogle Scholar | 21841791PubMed |

Tesar, P. J., Chenoweth, J. G., Brook, F. A., Davies, T. J., Evans, E. P., Mack, D. L., Gardner, R. L., and McKay, R. D. G. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199.
New cell lines from mouse epiblast share defining features with human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 17597760PubMed |

Thomson, J. A., Kalishman, J., Golos, T. G., Durning, M., Harris, C. P., Becker, R. A., and Hearn, J. P. (1995). Isolation of a primate embryonic stem cell line. Proc. Natl Acad. Sci. USA 92, 7844–7848.
Isolation of a primate embryonic stem cell line.Crossref | GoogleScholarGoogle Scholar | 7544005PubMed |

Thomson, J. A., Kovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swierhiel, J. J., Marshall, V. S., and Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.
Embryonic stem cell lines derived from human blastocysts.Crossref | GoogleScholarGoogle Scholar | 9804556PubMed |

Thomson, A. J., Pierart, H., Meek, S., Bogerman, A., Sutherland, L., Murray, H., Mountjoy, E., Downing, A., Talbot, R., Sartori, C., Whitelaw, C. B. A., Freeman, T. C., Archibald, A. L., and Burdon, T. (2012). Reprogramming pig fetal fibroblasts reveals a functional LIF signaling pathway. Cell Reprogram. 14, 112–122.
Reprogramming pig fetal fibroblasts reveals a functional LIF signaling pathway.Crossref | GoogleScholarGoogle Scholar | 22339199PubMed |

Tian, H.-B., Wang, H., Sha, H.-Y., Xu, X.-J., Zhu, M., Wu, Y.-B., Cheng, S.-H., Chen, J.-Q., Shi, Y.-X., Bai, Z.-L., and Cheng, G.-X. (2006). Factors derived from mouse embryonic stem cells promote self-renewal of goat embryonic stem-like cells. Cell Biol. Int. 30, 452–458.
Factors derived from mouse embryonic stem cells promote self-renewal of goat embryonic stem-like cells.Crossref | GoogleScholarGoogle Scholar | 16631391PubMed |

Tribulo, P., Leão, B. C. da S., Lehloenya, K. C., Mingoti, G. Z., and Hansen, P. J. (2017). Consequences of endogenous and exogenous WNT signaling for development of the preimplantation bovine embryo. Biol. Reprod. 96, 1129–1141.
Consequences of endogenous and exogenous WNT signaling for development of the preimplantation bovine embryo.Crossref | GoogleScholarGoogle Scholar | 28575156PubMed |

Tsakiridis, A., Economou, C., Zhao, S., Karagianni, E., Skylaki, S., Wilson, V., Osorno, R., Huang, Y., Blin, G., Lowell, S., and Wymeersch, F. (2014). Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors. Development 141, 1209–1221.
Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors.Crossref | GoogleScholarGoogle Scholar | 24595287PubMed |

Tsukiyama, T., and Ohinata, Y. (2014). A modified EpiSC culture condition containing a GSK3 inhibitor can support germline-competent pluripotency in mice. PLoS One 9, e95329.
A modified EpiSC culture condition containing a GSK3 inhibitor can support germline-competent pluripotency in mice.Crossref | GoogleScholarGoogle Scholar | 25486280PubMed |

Van Stekelenbugh-Hamers, A. E. P. (1995). Isolation and characterization of permanent cell lines from inner cell mass cells of bovine blastocysts. Mol. Reprod. Dev. 40, 444–454.
Isolation and characterization of permanent cell lines from inner cell mass cells of bovine blastocysts.Crossref | GoogleScholarGoogle Scholar |

Vassiliev, I., Vassilieva, S., Beebe, L. F. S., Harrison, S. J., Mcilfatrick, S. M., and Nottle, M. B. (2010a). In vitro and in vivo characterization of putative porcine embryonic stem cells. Cell Reprogram. 12, 223–230.
In vitro and in vivo characterization of putative porcine embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 20677936PubMed |

Vassiliev, I., Vassilieva, S., Beebe, L. F. S., Harrison, S. J., Mcilfatrick, S. M., and Nottle, M. B. (2010b). Development of culture conditions for the isolation of pluripotent porcine embryonal outgrowths from in vitro produced and in vivo derived embryos. J. Reprod. Dev. 56, 546–551.
Development of culture conditions for the isolation of pluripotent porcine embryonal outgrowths from in vitro produced and in vivo derived embryos.Crossref | GoogleScholarGoogle Scholar | 20519828PubMed |

Vassiliev, I., Vassilieva, S., Truong, K. P., Beebe, L. F. S., Mcilfatrick, S. M., Harrison, S. J., and Nottle, M. B. (2011). Isolation and in vitro characterization of putative porcine embryonic stem cells from cloned embryos treated with trichostatin A. Cell Reprogram 13, 205–213.
Isolation and in vitro characterization of putative porcine embryonic stem cells from cloned embryos treated with trichostatin A.Crossref | GoogleScholarGoogle Scholar | 21548828PubMed |

Verma, V., Huang, B., and Kallingappa, P. K. (2013). Dual kinase inhibition promotes pluripotency in finite bovine embryonic cell lines. Stem Cells Dev. 22, 1728–1742.
Dual kinase inhibition promotes pluripotency in finite bovine embryonic cell lines.Crossref | GoogleScholarGoogle Scholar | 23282176PubMed |

Wakayama, T., Shinkai, Y., Tamashiro, K. L. K., Niida, H., Blanchard, D. C., Blanchard, R. J., Ogura, A., Tanemura, K., Tachibana, M., Perry, A. C. F., Colgan, D. F., Mombaerts, P., and Yanagimachi, R. (2000). Cloning of mice to six generations. Nature 407, 318–319.
Cloning of mice to six generations.Crossref | GoogleScholarGoogle Scholar | 11014179PubMed |

Wang, L., Duan, E., Sung, L., Jeong, B.-S., Yang, X., and Tian, X. C. (2005). Generation and characterization of pluripotent stem cells from cloned bovine embryos. Biol. Reprod. 73, 149–155.
Generation and characterization of pluripotent stem cells from cloned bovine embryos.Crossref | GoogleScholarGoogle Scholar | 15744021PubMed |

Wang, J., Gu, Q., Hao, J., Jia, Y., Xue, B., Jin, H., Ma, J., Wei, R., Hai, T., Kong, Q., Bou, G., Xia, P., Zhou, Q., Wang, L., and Liu, Z. (2013). Tbx3 and Nr5α2 play important roles in pig pluripotent stem cells. Stem Cell Rev Rep 9, 700–708.
Tbx3 and Nr5α2 play important roles in pig pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 23625189PubMed |

Wang, C., Han, X., Zhou, Z., Uyunbilig, B., Huang, X., Li, R., and Li, X. (2019). Wnt3a Activates the WNT-YAP/TAZ Pathway to Sustain CDX2 Expression in Bovine Trophoblast Stem Cells. DNA Cell Biol. 38, 410–422.
Wnt3a Activates the WNT-YAP/TAZ Pathway to Sustain CDX2 Expression in Bovine Trophoblast Stem Cells.Crossref | GoogleScholarGoogle Scholar | 30896984PubMed |

Wei, Q., Xi, Q., Liu, X., Meng, K., Zhao, X., and Ma, B. (2017). Characterization of goat inner cell mass derived cells in double kinase inhibition condition. Biochem. Biophys. Res. Commun. 483, 325–331.
Characterization of goat inner cell mass derived cells in double kinase inhibition condition.Crossref | GoogleScholarGoogle Scholar | 28025142PubMed |

Wells, D. N., Misica, P. M., Day, T. A., and Tervit, H. R. (1997). Production of cloned lambs from an established embryonic cell line: a comparison between in vivo- and in vitro-matured cytoplasts. Biol. Reprod. 57, 385–393.
Production of cloned lambs from an established embryonic cell line: a comparison between in vivo- and in vitro-matured cytoplasts.Crossref | GoogleScholarGoogle Scholar | 9241054PubMed |

West, F. D., Terlouw, S. L., Kwon, D. J., Mumaw, J. L., Dhara, S. K., Hasneen, K., Dobrinsky, J. R., and Stice, S. L. (2010). Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev. 19, 1211–1220.
Porcine induced pluripotent stem cells produce chimeric offspring.Crossref | GoogleScholarGoogle Scholar | 20380514PubMed |

Williams, D. K., Pinzón, C., Huggins, S., Pryor, J. H., Falck, A., Herman, F., Oldeschulte, J., Chavez, M. B., Foster, B. L., White, S. H., Westhusin, M. E., Suva, L. J., Long, C. R., and Gaddy, D. (2018). Genetic engineering a large animal model of human hypophosphatasia in sheep. Sci. Rep. 8, 16945.
Genetic engineering a large animal model of human hypophosphatasia in sheep.Crossref | GoogleScholarGoogle Scholar | 30446691PubMed |

Wodarz, A., and Nusse, R. (1998). Mechanisms of Wnt signaling in development. Annu. Rev. Cell Dev. Biol. 14, 59–88.
Mechanisms of Wnt signaling in development.Crossref | GoogleScholarGoogle Scholar | 9891778PubMed |

Wolf, X. A., Rasmussen, M. A., Schauser, K., Jensen, A. T., Schmidt, M., and Hyttel, P. (2011). OCT4 expression in outgrowth colonies derived from porcine inner cell masses and epiblasts. Reprod. Domest. Anim. 46, 385–392.
OCT4 expression in outgrowth colonies derived from porcine inner cell masses and epiblasts.Crossref | GoogleScholarGoogle Scholar | 20663092PubMed |

Wray, J., Kalkan, T., Gomez-Lopez, S., Eckardt, D., Cook, A., Kemler, R., and Smith, A. (2011). Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat. Cell Biol. 13, 838–845.
Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation.Crossref | GoogleScholarGoogle Scholar | 21685889PubMed |

Wu, J., and Izpisua Belmonte, J. C. (2015). Dynamic pluripotent stem cell states and their applications. Cell Stem Cell 17, 509–525.
Dynamic pluripotent stem cell states and their applications.Crossref | GoogleScholarGoogle Scholar | 26544113PubMed |

Wu, D., and Pan, W. (2010). GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem. Sci. 35, 161–168.
GSK3: a multifaceted kinase in Wnt signaling.Crossref | GoogleScholarGoogle Scholar | 19884009PubMed |

Wu, Z., Chen, J., Ren, J., Bao, L., Liao, J., Cui, C., Rao, L., Li, H., Gu, Y., Dai, H., Zhu, H., Teng, X., Cheng, L., and Xiao, L. (2009). Generation of pig induced pluripotent stem cells with a drug-inducible system. J. Mol. Cell Biol. 1, 46–54.
Generation of pig induced pluripotent stem cells with a drug-inducible system.Crossref | GoogleScholarGoogle Scholar | 19502222PubMed |

Wu, J., Okamura, D., Li, M., Suzuki, K., Luo, C., Ma, L., He, Y., Li, Z., Benner, C., Tamura, I., Krause, M. N., Nery, J. R., Du, T., Zhang, Z., Hishida, T., Takahashi, Y., Aizawa, E., Kim, N. Y., Lajara, J., Guillen, P., Campistol, J. M., Esteban, C. R., Ross, P. J., Saghatelian, A., Ren, B., Ecker, J. R., and Belmonte, J. C. I. (2015). An alternative pluripotent state confers interspecies chimaeric competency. Nature 521, 316–321.
An alternative pluripotent state confers interspecies chimaeric competency.Crossref | GoogleScholarGoogle Scholar | 25945737PubMed |

Wu, X., Song, M., Yang, X., Liu, X., Liu, K., Jiao, C., and Wang, J. (2016). Establishment of bovine embryonic stem cells after knockdown of CDX2. Sci Rep 6, 28343.
Establishment of bovine embryonic stem cells after knockdown of CDX2.Crossref | GoogleScholarGoogle Scholar | 27320776PubMed |

Wu, J., Platero-Luengo, A., Sakurai, M., Sugawara, A., Gil, M. A., Yamauchi, T., Suzuki, K., Bogliotti, Y. S., Cuello, C., Morales Valencia, M., Okumura, D., Luo, J., Vilariño, M., Parrilla, I., Soto, D. A., Martinez, C. A., Hishida, T., Sánchez-Bautista, S., Martinez-Martinez, M. L., Wang, H., Nohalez, A., Aizawa, E., Martinez-Redondo, P., Ocampo, A., Reddy, P., Roca, J., Maga, E. A., Esteban, C. R., Berggren, W. T., Nuñez Delicado, E., Lajara, J., Guillen, I., Guillen, P., Campistol, J. M., Martinez, E. A., Ross, P. J., and Izpisua Belmonte, J. C. (2017). Interspecies chimerism with mammalian pluripotent stem cells. Cell 168, 473–486.
Interspecies chimerism with mammalian pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 28129541PubMed |

Xue, B., Li, Y., He, Y., Wei, R., Sun, R., Yin, Z., Bou, G., and Liu, Z. (2016). Porcine pluripotent stem cells derived from IVF embryos contribute to chimeric development in vivo. PLoS One 11, e0151737.
Porcine pluripotent stem cells derived from IVF embryos contribute to chimeric development in vivo.Crossref | GoogleScholarGoogle Scholar | 28002428PubMed |

Yadav, P. S., Kues, W. A., Herrmann, D., Carnwath, J. W., and Niemann, H. (2005). Bovine ICM derived cells express the Oct4 ortholog. Mol. Reprod. Dev. 72, 182–190.
Bovine ICM derived cells express the Oct4 ortholog.Crossref | GoogleScholarGoogle Scholar | 15973686PubMed |

Yang, J., Shiue, Y., Liao, C., Lin, S., and Chen, L. (2009). Establishment and characterization of novel porcine embryonic stem cell lines expressing hrGFP. Cloning Stem Cells 11, 235–244.
Establishment and characterization of novel porcine embryonic stem cell lines expressing hrGFP.Crossref | GoogleScholarGoogle Scholar | 19508116PubMed |

Yang, J.-R., Liao, C.-H., Pang, C.-Y., Huang, L. L.-H., Lin, Y.-T., Chen, Y.-L., Shiue, Y.-L., and Chen, L.-R. (2010). Directed differentiation into neural lineages and therapeutic potential of porcine embryonic stem cells in rat Parkinson’s disease model. Cell. Reprogram. 12, 447–461.
Directed differentiation into neural lineages and therapeutic potential of porcine embryonic stem cells in rat Parkinson’s disease model.Crossref | GoogleScholarGoogle Scholar | 20698783PubMed |

Yang, J.-Y., Mumaw, J. L., Liu, Y., Stice, S. L., and West, F. D. (2013). SSEA4-positive pig induced pluripotent stem cells are primed for differentiation into neural cells. Cell Transplant. 22, 945–959.
SSEA4-positive pig induced pluripotent stem cells are primed for differentiation into neural cells.Crossref | GoogleScholarGoogle Scholar | 23043799PubMed |

Yang, Y., Liu, B., Xu, J., Wang, J., Wu, J., Shi, C., Xu, Y., Dong, J., Wang, C., Lai, W., Zhu, J., Xiong, L., Zhu, D., Li, X., Yang, W., Yamauchi, T., Sugawara, A., Li, Z., Sun, F., Li, X., Li, C., He, A., Du, Y., Wang, T., Zhao, C., Li, H., Chi, X., Zhang, H., Liu, Y., Li, C., Duo, S., Yin, M., Shen, H., Belmonte, J. C. I., and Deng, H. (2017a). Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell 169, 243–257.
Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency.Crossref | GoogleScholarGoogle Scholar | 28388409PubMed |

Yang, J., Ryan, D. J., Wang, W., Tsang, J. C. H., Lan, G., Masaki, H., Gao, X., Antunes, L., Yu, Y., Zhu, Z., Wang, J., Kolodziejczyk, A. A., Campos, L. S., Wang, C., Yang, F., Zhong, Z., Fu, B., Eckersley-Maslin, M. A., Woods, M., Tanaka, Y., Chen, X., Wilkinson, A. C., Bussell, J., White, J., Ramirez-Solis, R., Reik, W., Göttgens, B., Teichmann, S. A., Tam, P. P. L., Nakauchi, H., Zou, X., Lu, L., and Liu, P. (2017b). Establishment of mouse expanded potential stem cells. Nature 550, 393–397.
Establishment of mouse expanded potential stem cells.Crossref | GoogleScholarGoogle Scholar | 29019987PubMed |

Yang, J., Ryan, D. J., Lan, G., Zou, X., and Liu, P. (2019). In vitro establishment of expanded-potential stem cells from mouse pre-implantation embryos or embryonic stem cells. Nat. Protoc. 14, 350–378.
In vitro establishment of expanded-potential stem cells from mouse pre-implantation embryos or embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 30617351PubMed |

Yi, F., Merrill, B. J., Pereira, L., Hoffman, J. A., Shy, B. R., Yuen, C. M., and Liu, D. R. (2011). Opposing effects of Tcf3 and Tcf1 control Wnt stimulation of embryonic stem cell self-renewal. Nat. Cell Biol. 13, 762–770.
| 21685894PubMed |

Ying, Q.-L., Ying, Q.-L., Wray, J., Wray, J., Nichols, J., Nichols, J., Batlle-Morera, L., Batlle-Morera, L., Doble, B., Doble, B., Woodgett, J., Woodgett, J., Cohen, P., Cohen, P., Smith, A., and Smith, A. (2008). The ground state of embryonic stem cell self-renewal. Nature 453, 519–523.
The ground state of embryonic stem cell self-renewal.Crossref | GoogleScholarGoogle Scholar | 18497825PubMed |

Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, I. I., and Thomson, J. A. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920.
Induced pluripotent stem cell lines derived from human somatic cells.Crossref | GoogleScholarGoogle Scholar | 18029452PubMed |

Zhang, B., Krawetz, R., and Rancourt, D. E. (2013). Would the real human embryonic stem cell please stand up? BioEssays 35, 632–638.
Would the real human embryonic stem cell please stand up?Crossref | GoogleScholarGoogle Scholar | 23653435PubMed |

Zhang, Y., Wei, C., Zhang, P., Li, X., Liu, T., Pu, Y., Li, Y., Cao, Z., Cao, H., Liu, Y., Zhang, X., and Zhang, Y. (2014). Efficient reprogramming of naïve-like induced pluripotent stem cells from porcine adipose-derived stem cells with a feeder-independent and serum-free system. PLoS One 9, e85089.
Efficient reprogramming of naïve-like induced pluripotent stem cells from porcine adipose-derived stem cells with a feeder-independent and serum-free system.Crossref | GoogleScholarGoogle Scholar | 25551824PubMed |

Zhang, S., Guo, Y., Cui, Y., Liu, Y., Yu, T., and Wang, H. (2015a). Generation of intermediate porcine iPS cells under culture condition favorable for mesenchymal-to-epithelial transition. Stem Cell Rev Rep 11, 24–38.
Generation of intermediate porcine iPS cells under culture condition favorable for mesenchymal-to-epithelial transition.Crossref | GoogleScholarGoogle Scholar | 25134796PubMed |

Zhang, W., Pei, Y., Zhong, L., Wen, B., Cao, S., and Han, J. (2015b). Pluripotent and metabolic features of two types of porcine iPSCs derived from defined mouse and human ES cell culture conditions. PLoS One 10, e0124562.
Pluripotent and metabolic features of two types of porcine iPSCs derived from defined mouse and human ES cell culture conditions.Crossref | GoogleScholarGoogle Scholar | 26713754PubMed |

Zhang, M., Wang, C., Jiang, H., Liu, M., and Yang, N. (2019). Derivation of novel naive-like porcine embryonic stem cells by a reprogramming factor-assisted strategy. FASEB J. 33, 9350–9361.
Derivation of novel naive-like porcine embryonic stem cells by a reprogramming factor-assisted strategy.Crossref | GoogleScholarGoogle Scholar | 31125263PubMed |

Zhao, Y., Lin, J., Wang, L., Chen, B. O., Zhou, C., Chen, T., Guo, M., He, S., Zhang, N., Liu, C., Liu, M., and Huang, J. (2011). Derivation and characterization of ovine embryonic stem-like cell lines in semi-defined medium without feeder cells. J. Exp. Zool. 315A, 639–648.
Derivation and characterization of ovine embryonic stem-like cell lines in semi-defined medium without feeder cells.Crossref | GoogleScholarGoogle Scholar |

Zhao, L., Wang, Z., Zhang, J., Yang, J., Gao, X., Wu, B., Zhao, G., Bao, S., Hu, S., Liu, P., and Li, X. (2017). Characterization of the single-cell derived bovine induced pluripotent stem cells. Tissue Cell 49, 521–527.
Characterization of the single-cell derived bovine induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 28720304PubMed |

Zhou, Q., Wang, M., Yuan, Y., Wang, X., Fu, R., Wan, H., Xie, M., Liu, M., Guo, X., Zheng, Y., Feng, G., Shi, Q., Zhao, X. Y., Sha, J., and Zhou, Q. (2016). Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell 18, 330–340.
Complete meiosis from embryonic stem cell-derived germ cells in vitro.Crossref | GoogleScholarGoogle Scholar | 26923202PubMed |

Zhu, S.-X., Sun, Z., and Zhang, J.-P. (2007). Ovine (Ovis aries) blastula from an in vitro production system and isolation of primary embryonic stem cells. Zygote 15, 35–41.
Ovine (Ovis aries) blastula from an in vitro production system and isolation of primary embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 17391544PubMed |